Please wait a minute...
材料导报  2024, Vol. 38 Issue (8): 23040185-6    https://doi.org/10.11896/cldb.23040185
  电化学能源材料与器件 |
Mn离子掺杂Pr0.5Ba0.5Fe0.9Mn0.1O3-δ钙钛矿SOEC阴极电解CO2性能研究
唐江城1, 赵先兴2,*, 蔡润田2, 杨城昊1, 池波1
1 华中科技大学材料科学与工程学院,武汉 430074
2 新奥天然气股份有限公司,河北 廊坊 065000
Performance Research of CO2 Electrolysis of Mn Doped Pr0.5Ba0.5Fe0.9Mn0.1O3-δ Perovskite as SOEC Cathode
TANG Jiangcheng1, ZHAO Xianxing2,*, CAI Runtian2, YANG Chenghao1, CHI Bo1
1 School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2 Xin’ao Natural Gas Co., Ltd., Langfang 065000, Hebei, China
下载:  全 文 ( PDF ) ( 18789KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 固体氧化物电解池(SOEC)电解CO2时其阴极是CO2还原反应发生的场所,也是SOEC取得高性能的关键环节。研究了Mn离子掺杂的Pr0.5Ba0.5Fe0.9Mn0.1O3-δ(PBFM)钙钛矿材料作为SOEC阴极电解纯CO2的性能。结果表明,在850 ℃、1.8 V的电解电压下,基于PBFM阴极的SOEC电流密度可达1.7 A·cm-2,较使用未掺杂的Pr0.5Ba0.5FeO3-δ(PBF)阴极提升了约30%;同时,电池的极化阻抗下降约60%,电化学性能增长主要来源于掺杂后氧空位浓度的增加。在800 ℃、1.3 V恒压的条件下70 h的长期测试中,PBFM电池没有表现出明显的衰减,且长期测试后的电极没有积碳现象。研究证明PBFM是一种有前景的电解CO2 SOEC阴极材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐江城
赵先兴
蔡润田
杨城昊
池波
关键词:  固体氧化物电解池  CO2电解  钙钛矿材料  阴极催化剂  金属离子掺杂    
Abstract: Cathode is the site where the CO2 reduction reaction occurs in solid oxide electrolysis cell (SOEC) for CO2 electrolysis, and it is also the key component for SOEC to achieve high performance. The electrochemical performance of Pr0.5Ba0.5Fe0.9Mn0.1O3-δ (PBFM) perovskite as SOEC cathode catalyst to convert CO2 to CO was studied. The result shows that the cell based on PBFM cathode shows a higher current density of 1.7 A·cm-2 at applied 1.8 V voltage and 850 ℃. There is an approximately 30% performance improvement compared to the SOEC based on PBF cathode. Meanwhile, the polarization impedance has also decreased by about 60%. The increased current density originates from the improved oxygen vacancy. Furthermore, the cell with this active catalyst exhibits a stable CO2 electrolysis performance for 70 h operation at a stable voltage of 1.3 V at 800 ℃, and no carbon deposition is detected after the long-term test. The research suggests that PBFM can be a talented candidate as SOEC cathode for CO2 electrolysis.
Key words:  solid oxide electrolysis cells    CO2 electrolysis    perovskite material    cathode catalyst    metal ion doping
出版日期:  2024-04-25      发布日期:  2024-04-28
ZTFLH:  TQ151  
基金资助: 国家重点研发计划(2020YFB1506304)
通讯作者:  *赵先兴,高级工程师,2012年获得硕士学位,主要从事燃料电池发电系统开发与电解制氢系统开发方面的研究。在知名期刊发表论文2篇,授权发明专利6项。tsuu1987@126.com   
作者简介:  唐江城,2019年7月于西南大学获得工学学士学位。现为华中科技大学材料科学与工程学院硕士研究生。目前主要研究领域为SOEC电解CO2
引用本文:    
唐江城, 赵先兴, 蔡润田, 杨城昊, 池波. Mn离子掺杂Pr0.5Ba0.5Fe0.9Mn0.1O3-δ钙钛矿SOEC阴极电解CO2性能研究[J]. 材料导报, 2024, 38(8): 23040185-6.
TANG Jiangcheng, ZHAO Xianxing, CAI Runtian, YANG Chenghao, CHI Bo. Performance Research of CO2 Electrolysis of Mn Doped Pr0.5Ba0.5Fe0.9Mn0.1O3-δ Perovskite as SOEC Cathode. Materials Reports, 2024, 38(8): 23040185-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23040185  或          https://www.mater-rep.com/CN/Y2024/V38/I8/23040185
1 Song Y, Zhang X, Xie K, et al. Advanced Materials, 2019, 31(50), 1902033.
2 Cheng D, Negreiros F R, Aprà E, et al. ChemSusChem, 2013, 6, 944.
3 Yang C, Tian Y, Pu J, et al. ACS Sustainable Chemistry & Engineering, 2022, 10, 1047.
4 Tian Y F, Wang W J, Liu Y, et al. ACS Catalysis, 2021, 11, 3704.
5 Wang W, Tian Y, Liu Y, et al. Science China-Materials, 2021, 64, 1621
6 Tian Y, Zheng H, Zhang L, et al. Journal of the Electrochemical Society, 2018, 165, F17.
7 Tian Y, Zhang L, Liu Y, et al. Journal of Materials Chemistry A, 2019, 7, 6395.
8 Kleiminger L, Li T, Li K, et al. RSC Advances, 2014, 4, 50003.
9 Chen L, Chen F, Xia C. Energy & Environmental Science, 2014, 7, 4018.
10 Gao L, Fu Q, Wei M, et al. ACS Catalysis, 2016, 6(10), 6814.
11 Chen M, Liu Y, Bentzen J, et al. Journal of the Electrochemical Society, 2013, 160(8), F883.
12 Li W, Shi Y, Luo Y, et al. Journal of Power Sources, 2015, 276, 26.
13 Keane M, Fan H, Han M, et al. International Journal of Hydrogen Energy, 2014, 39(33), 18718.
14 Ma Z, Zhou J, Li Y, et al. Fuel Cells, 2020, 20(6), 650.
15 Bidrawn F, Kim G, Corre G, et al. Electrochemical and Solid State Letters, 2008, 11(9), B167.
16 Li J, Zhou X, Wu C, et al. Chemical Engineering Journal, 2022, 438, 135446.
17 Li Y, Tian Y, Li J, et al. Journal of Power Sources, 2022, 528, 231202.
18 Yue X, Irvine J T S. Journal of the Electrochemical Society, 2012, 159(8), F442
19 Park S, Han H, Yoon W, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(16), 6564.
20 Yue X, Irvine J T S. Solid State Ionics, 2012, 225, 131.
21 Fagg D P, Kharton V V, Kovalevsky A V, et al. Journal of the European Ceramic Society, 2001, 21, 1831.
22 Yokokawa H, Sakai N, Kawada T, et al. Solid State Ionics, 1992, 52, 43.
23 Li J, Wei B, Cao Z, et al. ChemSusChem, 2018, 11, 254.
24 Mahata A, Datta P, Basu R N. Ceramics International, 2017, 43, 433.
25 Ren B, Croiset E, Ricardez S L. Journal of Catalysis, 2020, 383, 273.
26 Lv H, Zhou Y, Zhang X, et al. Journal of Energy Chemistry, 2019, 35, 71.
27 Zhou Y, Zhou Z, Song Y, et al. Nano Energy, 2018, 50, 43.
28 Liu S, Liu Q, Luo J. Journal of Materials Chemistry A, 2017, 5, 2268.
29 Sun C, Bian L, Qi J, et al. Journal of Power Sources, 2022, 521, 230984.
30 Deleebeeck L, Fournier J L, Birss V. Solid State Ionics, 2010, 181, 1229.
31 Zhu J X, Zhang W Q, Li Y F, at al. Applied Catalysis B:Environmental, 2020, 268, 118389.
32 Sun M, Zou L, Wang Z, et al. Electrochimica Acta, 2019, 327, 135017.
33 Wang Z, Zou L, Guo S, et al. Journal of Power Sources, 2020, 468, 228362.
34 Lee S, Kim M, Lee K T, et al. Advanced Energy Materials, 2021, 11, 2100339.
35 Liu C, Li S, Gao J, et al. ACS Applied Materials & Interfaces, 2021, 13, 8229.
36 Baddour-Hadjean R, Pereira-Ramos J. Chemical Reviews, 2010, 110, 1278.
[1] 黄旭锐, 余喻天, 雷金勇, 郝敬轩, 俞传鑫, 潘军, 杨怡萍, 廖梓豪, 关成志, 王建强. 导电(Cu,Mn)3O4接触层在SOEC阳极侧的应用[J]. 材料导报, 2024, 38(8): 23040278-4.
[2] 金胜利, 寿春晖, 黄绵吉, 贺海晏, 李聪. 钙钛矿太阳能电池稳定性研究进展及模组产业化趋势[J]. 材料导报, 2023, 37(5): 21030201-13.
[3] 宋灵婷, 肖文波, 黄乐, 吴华明. 三维、二维卤化物钙钛矿材料性能及应用综述[J]. 材料导报, 2022, 36(5): 20070246-7.
[4] 刘峥嵘, 杨甲铭, 付磊, 周礼凯, 吴可, 李晴皓, 王璇, 周峻, 吴锴. SrTiO3基可逆固体氧化物电池电极材料的研究进展[J]. 材料导报, 2022, 36(21): 21040196-8.
[5] 万婷婷, 朱安康, 郭友敏, 汪春昌. 钙钛矿太阳能电池:从高效率到稳定性*[J]. 《材料导报》期刊社, 2017, 31(5): 16-22.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed