Please wait a minute...
材料导报  2024, Vol. 38 Issue (8): 23040216-6    https://doi.org/10.11896/cldb.23040216
  电化学能源材料与器件 |
二氧化碳电催化还原酸性体系研究进展
孙亚洲, 徐沙, 邹金含, 吴智华*, 谢顺吉*
厦门大学化学化工学院,固体表面物理化学国家重点实验室,能源材料化学协同创新中心,福建能源材料科学与技术创新实验室,福建 厦门 361005
Recent Developments in the Electrocatalytic Reduction of CO2 in Acidic Environments
SUN Yazhou, XU Sha, ZOU Jinhan, WU Zhihua*, XIE Shunji*
State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
下载:  全 文 ( PDF ) ( 13071KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用可再生能源提供的电能电催化还原CO2制高值化学品和燃料,为全球气候变暖和能源危机提供了一种可行的解决方案,具有巨大的实际应用潜力。目前研究较多的碱性和中性反应体系中CO2易与氢氧根(OH-)反应生成碳酸盐或碳酸氢盐,造成CO2损失的同时会降低反应体系的能量转化效率和稳定性。研究开发酸性体系的电催化还原CO2反应(CO2RR),有望解决上述问题。本文针对CO2电催化还原的酸性体系展开讨论,系统整理了反应装置、催化剂、反应微环境对CO2RR性能的影响以及酸性体系中的微观反应机理,最后针对酸性体系中催化剂设计、反应机理研究、反应微环境调控、反应器设计优化等提出前瞻性建议。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙亚洲
徐沙
邹金含
吴智华
谢顺吉
关键词:  二氧化碳  电催化  还原  酸性电解体系    
Abstract: Electrocatalytic conversion of CO2 into high-value chemicals and fuels by renewable energy provides a viable approach to the global climate change and energy crisis, and its development has great potential for practical production. At present, most of the basic and neutral reaction systems studied, CO2 is liable to interact with hydroxide (OH-) to form carbonate or bicarbonate, resulting in CO2 loss, lowering the energy conversion efficiency and stability of the reaction system. The above problems will be solved by the research and development of electrocatalytic CO2 reduction reaction (CO2RR) in acid. This review has shed light on the effects of reaction device, catalyst, reaction microenvironment on the performance of CO2RR and the microscopic reaction mechanism systematically in acidic CO2RR. Finally, foresight tactics are put forward for catalyst design, reaction mechanism research, reaction microenvironment regulation, and reactor design and optimization in acidic CO2RR.
Key words:  carbon dioxide    electrocatalysis    reduction    acidic electrolytes
出版日期:  2024-04-25      发布日期:  2024-04-28
ZTFLH:  O646  
基金资助: 国家自然科学基金(22022201);福建能源材料科学与技术创新实验室科技项目(RD2020020201)
通讯作者:  *吴智华,2012年福州大学本科毕业,2015年厦门大学硕士毕业,2015年至今任厦门大学能源材料化学协同创新中心和嘉庚创新实验室实验师,参与国家重大研究计划培育项目1项、国家自然科学基金面上项目1项,主持省级项目1项,在Biotechnology Letter、Molecules等学术刊物上发表论文5篇。wuzh@xmu.edu.cn
谢顺吉,厦门大学教授,博士研究生导师。2008年湖南大学本科毕业,2014年厦门大学博士毕业,2014—2018年厦门大学能源材料化学协同创新中心iChEM博士后和研究员,2018年入职厦门大学,2020年被聘为厦门大学化学化工学院教授、博士研究生导师。研究聚焦发展电催化和光催化新方法,将二氧化碳、甲烷、甲醇等碳一分子和可再生生物质分子选择性地催化转化为高值化学品,并研究催化反应机制及其调控的表界面化学。在Nature Catal.、Nature Commun.、Energy Environ.Sci.、Chem.Soc.Rev.、Chem、Angew.Chem.Int.Ed.、ACS Catal.等国际学术刊物上发表论文30余篇。shunji_xie@xmu.edu.cn   
作者简介:  孙亚洲,2021年6月于郑州大学获得工学学士学位。现为厦门大学化学化工学院硕士研究生,在谢顺吉教授的指导下进行研究。目前主要研究领域为CO2电催化还原制CO及乙烯等。
引用本文:    
孙亚洲, 徐沙, 邹金含, 吴智华, 谢顺吉. 二氧化碳电催化还原酸性体系研究进展[J]. 材料导报, 2024, 38(8): 23040216-6.
SUN Yazhou, XU Sha, ZOU Jinhan, WU Zhihua, XIE Shunji. Recent Developments in the Electrocatalytic Reduction of CO2 in Acidic Environments. Materials Reports, 2024, 38(8): 23040216-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23040216  或          https://www.mater-rep.com/CN/Y2024/V38/I8/23040216
1 Zhang X, Zhang Z, Li H, et al. Advanced Energy Materials, 2022, 12(39), 2201461.
2 He M, Sun Y, Han B. Angewandte Chemie International Edition, 2022, 61(15), e202112835.
3 Xie S, Ma W, Wu X, et al. Energy & Environmental Science, 2021, 14(1), 37.
4 Lai W, Qiao Y, Zhang J, et al. Energy & Environmental Science, 2022, 15(9), 3603.
5 Ma W, He X, Wang W, et al. Chemical Society Reviews, 2021, 50(23), 12897.
6 Overa S, Ko B H, Zhao Y, et al. Accounts of Chemical Research, 2022, 55(5), 638.
7 Lees E W, Mowbray B A W, Parlane F G L, et al. Nature Reviews Materials, 2021, 7(1), 55.
8 Zhao Y, Zu X, Chen R, et al. Journal of the American Chemical Society, 2022, 144(23), 10446.
9 Vennekoetter J B, Sengpiel R, Wessling M. Chemical Engineering Journal, 2019, 364, 89.
10 Gabardo C M, O’Brien C P, Edwards J P, et al. Joule, 2019, 3(11), 2777.
11 Ooka H, Figueiredo M C, Koper M T M. Langmuir, 2017, 33(37), 9307.
12 Li J, Kornienko N. Chem Catalysis, 2022, 2(1), 29.
13 Hao Q, Liu D X, Zhong H X, et al. Chem Catalysis, DOI: 10.1016/j.checat.2023.100542.
14 Liu S, Yang H, Su X, et al. Journal of Energy Chemistry, 2019, 36, 95.
15 Monteiro M C O, Dattila F, Lopez N, et al. Journal of the American Chemical Society, 2022, 144(4), 1589.
16 Meng D L, Zhang M D, Si D H, et al. Angewandte Chemie International Edition, 2021, 60(48), 25485.
17 Huang J E, Li F W, Ozden A, et al. Science, 2021, 372(6546), 1074.
18 Li H, Li H, Wei P, et al. Energy & Environmental Science, DOI: 10.1039/d2ee03482d.
19 Bagger A, Ju W, Varela A S, et al. Chemphyschem, 2017, 18(22), 3266.
20 Jin S, Hao Z, Zhang K, et al. Angewandte Chemie International Edition, 2021, 60(38), 20627.
21 Ma X, Sun F, Qin L, et al. Chemical Science, 2022, 13(34), 10149.
22 Chen Q, Liu K, Zhou Y, et al. Nano Letters, 2022, 22(15), 6276.
23 Liu W, Bai P, Wei S, et al. Angewandte Chemie International Edition, 2022, 61(18), e202201166.
24 Ko Y J, Kim J Y, Lee W H, et al. Nature Communications, 2022, 13(1), 2205.
25 Guo X, Xu S M, Zhou H, et al. ACS Catalysis, 2022, 12(17), 10551.
26 Zhang J, Fan T, Huang P, et al. Advanced Functional Materials, 2022, 32(25), 2113075.
27 Ma W, Xie S, Zhang X G, et al. Nature Communications, 2019, 10(1), 892.
28 Nitopi S, Bertheussen E, Scott S B, et al. Chemical Reviews, 2019, 119(12), 7610.
29 Zhou Y, Che F, Liu M, et al. Nature Chemistry, 2018, 10(9), 974.
30 Jiang K, Sandberg R B, Akey A J, et al. Nature Catalysis, 2018, 1(2), 111.
31 Zheng T, Zhang M, Wu L, et al. Nature Catalysis, 2022, 5, 388.
32 Liu Z, Yan T, Shi H, et al. ACS Applied Materials & Interfaces, 2022, 14(6), 7900.
33 Bondue C J, Graf M, Goyal A, et al. Journal of the American Chemical Society, 2021, 143(1), 279.
34 Sheng X, Ge W, Jiang H, et al. Advanced Materials, 2022, 34(38), e2201295.
35 Pan B, Fan J, Zhang J, et al. ACS Energy Letters, 2022, 7(12), 4224.
36 Boutin E, Merakeb L, Ma B, et al. Chemical Society Reviews, 2020, 49(16), 5772.
37 Meshitsuka S, Ichikawa M, Tamaru K. Journal of the Chemical Society, Chemical Communications, 1974,(5), 158.
38 Lieber C M, Lewis N S. Journal of the American Chemical Society, 1984, 106(17), 5033.
39 Schneider J, Jia H, Muckerman J T, et al. Chemical Society Reviews, 2012, 41(6), 2036.
40 Han N, Wang Y, Ma L, et al. Chem, 2017, 3(4), 652.
41 Liu Y, McCrory C C L. Nature Communications, 2019, 10(1), 1683.
42 Jiang Z, Zhang Z, Li H, et al. Advanced Energy Materials, 2022, 13(6), 2203603.
43 Kortlever R, Balemans C, Kwon Y, et al. Catalysis Today, 2015, 244, 58.
44 Wang Y, Wang C, Wei Y, et al. Chemistry-A European Journal, 2022, 28(58), e202201832.
45 Qiao Y, Lai W, Huang K, et al. ACS Catalysis, 2022, 12(4), 2357.
46 Li L, Liu Z, Yu X, et al. Angewandte Chemie International Edition, DOI: 10.1002/ange.202300226.
47 Chen X Y, Chen J F, Alghoraibi N M, et al. Nature Catalysis, 2021, 4(1), 20.
48 Gu J, Liu S, Ni W, et al. Nature Catalysis, 2022, 5(4), 268.
49 Xie Y, Ou P, Wang X, et al. Nature Catalysis, 2022, 5(6), 564.
50 Zhao Y, Hao L, Ozden A, et al. Nature Synthesis, DOI: 10.1038/s44160-022-00234-x.
51 Nie W, Heim G P, Watkins N B, et al. Angewandte Chemie Internatio-nal Edition, 2023, 62(12), e202216102.
52 Zhang J, Guo C, Fang S, et al. Nature Communications, 2023, 14, 1298.
53 Cao Y, Chen Z, Li P, et al. Nature Communications, 2023, 14, 2387.
54 Cobb S J, Badiani V M, Dharani A M, et al. Nature Chemistry, 2022, 14(4), 417.
[1] 方瑜, 李靖, 孔维超, 周雪, 徐林, 孙冬梅, 唐亚文. 纳米碳片负载Mott-Schottky型Co/Co9S8异质结的原位合成及电催化性能研究[J]. 材料导报, 2024, 38(8): 23040234-7.
[2] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[3] 陈美玲, 孙艳芝, 吴玉锋, 袁浩然, 潘军青. 废轮胎裂解炭黑在能源存储及转换中的应用进展[J]. 材料导报, 2024, 38(8): 23100011-11.
[4] 邓开鑫, 刘澄虎, 于志庆, 黄文斌, 魏强, 周亚松. 碳化钼的结构、制备及应用研究进展[J]. 材料导报, 2024, 38(5): 22080058-18.
[5] 贾飞宏, 卫学玲, 包维维, 邹祥宇. MoS2/Ni3S2/NF双功能电催化剂用于高效全水解[J]. 材料导报, 2024, 38(4): 22040365-7.
[6] 王金涛, 段体岗, 郭建章, 马力, 余聚鑫, 张海兵. 三维碳纤维基复合材料及其在海水溶解氧电池中的应用性能[J]. 材料导报, 2024, 38(4): 22040345-6.
[7] 高娜, 庞佩琦, 李智, 牟国栋, 崔天成, 杜贤龙, 李涛, 肖国萍. 电解工艺条件对Cu基催化剂电化学还原CO2的产物分布影响[J]. 材料导报, 2024, 38(24): 23100052-5.
[8] 裴文霞, 赵国仙, 丁浪勇, 方堃, 王帆, 刘冉冉. 温度对管线钢在SRB/CO2环境中的腐蚀影响[J]. 材料导报, 2024, 38(23): 23070058-8.
[9] 师楷雁, 白杰, 孙炜岩. 碳基电极材料的改性方法与应用进展[J]. 材料导报, 2024, 38(22): 23080167-9.
[10] 刘睿琦, 孙善富, 程鹏飞, 王莹麟, 郝熙冬. 光/电催化废塑料升级再造高附加值化学品研究进展[J]. 材料导报, 2024, 38(20): 23060226-7.
[11] 刘向阳, 王议, 夏爽, 刘中清. 镍铁双氢氧化物的响应曲面法优化生长和电催化析氧性能研究[J]. 材料导报, 2024, 38(16): 23040152-5.
[12] 郑栋浩, 贺格平, 弥元梅, 皇甫慧君, 张慧敏, 李彦霞, 袁蝴蝶. 氧化石墨烯添加量对MoSe2复合rGO电极材料电化学性能的影响[J]. 材料导报, 2024, 38(16): 23060178-8.
[13] 程春龙, 陈正, 陈长玖, 柳力晨, 乐启炽. 镁合金表面高温氧化膜CO2矿化处理研究[J]. 材料导报, 2024, 38(16): 23040159-6.
[14] 张华, 马帅帅, 张甜, 罗毅, 吴文洁, 任晓辉, 刘涛, 倪红卫. 基于高磷铁矿制备Fe-P合金催化剂用于高效全解水反应[J]. 材料导报, 2024, 38(15): 23050039-5.
[15] 刘方旺, 王建花, 于明月, 张莉, 张倩, 孟建华, 高庆平, 江津河. 构建多活性位点的单组分金属卤化物@吡啶/咪唑多孔有机框架用于CO2的高效吸收与催化[J]. 材料导报, 2024, 38(15): 23030227-10.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed