Recent Developments in the Electrocatalytic Reduction of CO2 in Acidic Environments
SUN Yazhou, XU Sha, ZOU Jinhan, WU Zhihua*, XIE Shunji*
State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
Abstract: Electrocatalytic conversion of CO2 into high-value chemicals and fuels by renewable energy provides a viable approach to the global climate change and energy crisis, and its development has great potential for practical production. At present, most of the basic and neutral reaction systems studied, CO2 is liable to interact with hydroxide (OH-) to form carbonate or bicarbonate, resulting in CO2 loss, lowering the energy conversion efficiency and stability of the reaction system. The above problems will be solved by the research and development of electrocatalytic CO2 reduction reaction (CO2RR) in acid. This review has shed light on the effects of reaction device, catalyst, reaction microenvironment on the performance of CO2RR and the microscopic reaction mechanism systematically in acidic CO2RR. Finally, foresight tactics are put forward for catalyst design, reaction mechanism research, reaction microenvironment regulation, and reactor design and optimization in acidic CO2RR.
1 Zhang X, Zhang Z, Li H, et al. Advanced Energy Materials, 2022, 12(39), 2201461. 2 He M, Sun Y, Han B. Angewandte Chemie International Edition, 2022, 61(15), e202112835. 3 Xie S, Ma W, Wu X, et al. Energy & Environmental Science, 2021, 14(1), 37. 4 Lai W, Qiao Y, Zhang J, et al. Energy & Environmental Science, 2022, 15(9), 3603. 5 Ma W, He X, Wang W, et al. Chemical Society Reviews, 2021, 50(23), 12897. 6 Overa S, Ko B H, Zhao Y, et al. Accounts of Chemical Research, 2022, 55(5), 638. 7 Lees E W, Mowbray B A W, Parlane F G L, et al. Nature Reviews Materials, 2021, 7(1), 55. 8 Zhao Y, Zu X, Chen R, et al. Journal of the American Chemical Society, 2022, 144(23), 10446. 9 Vennekoetter J B, Sengpiel R, Wessling M. Chemical Engineering Journal, 2019, 364, 89. 10 Gabardo C M, O’Brien C P, Edwards J P, et al. Joule, 2019, 3(11), 2777. 11 Ooka H, Figueiredo M C, Koper M T M. Langmuir, 2017, 33(37), 9307. 12 Li J, Kornienko N. Chem Catalysis, 2022, 2(1), 29. 13 Hao Q, Liu D X, Zhong H X, et al. Chem Catalysis, DOI: 10.1016/j.checat.2023.100542. 14 Liu S, Yang H, Su X, et al. Journal of Energy Chemistry, 2019, 36, 95. 15 Monteiro M C O, Dattila F, Lopez N, et al. Journal of the American Chemical Society, 2022, 144(4), 1589. 16 Meng D L, Zhang M D, Si D H, et al. Angewandte Chemie International Edition, 2021, 60(48), 25485. 17 Huang J E, Li F W, Ozden A, et al. Science, 2021, 372(6546), 1074. 18 Li H, Li H, Wei P, et al. Energy & Environmental Science, DOI: 10.1039/d2ee03482d. 19 Bagger A, Ju W, Varela A S, et al. Chemphyschem, 2017, 18(22), 3266. 20 Jin S, Hao Z, Zhang K, et al. Angewandte Chemie International Edition, 2021, 60(38), 20627. 21 Ma X, Sun F, Qin L, et al. Chemical Science, 2022, 13(34), 10149. 22 Chen Q, Liu K, Zhou Y, et al. Nano Letters, 2022, 22(15), 6276. 23 Liu W, Bai P, Wei S, et al. Angewandte Chemie International Edition, 2022, 61(18), e202201166. 24 Ko Y J, Kim J Y, Lee W H, et al. Nature Communications, 2022, 13(1), 2205. 25 Guo X, Xu S M, Zhou H, et al. ACS Catalysis, 2022, 12(17), 10551. 26 Zhang J, Fan T, Huang P, et al. Advanced Functional Materials, 2022, 32(25), 2113075. 27 Ma W, Xie S, Zhang X G, et al. Nature Communications, 2019, 10(1), 892. 28 Nitopi S, Bertheussen E, Scott S B, et al. Chemical Reviews, 2019, 119(12), 7610. 29 Zhou Y, Che F, Liu M, et al. Nature Chemistry, 2018, 10(9), 974. 30 Jiang K, Sandberg R B, Akey A J, et al. Nature Catalysis, 2018, 1(2), 111. 31 Zheng T, Zhang M, Wu L, et al. Nature Catalysis, 2022, 5, 388. 32 Liu Z, Yan T, Shi H, et al. ACS Applied Materials & Interfaces, 2022, 14(6), 7900. 33 Bondue C J, Graf M, Goyal A, et al. Journal of the American Chemical Society, 2021, 143(1), 279. 34 Sheng X, Ge W, Jiang H, et al. Advanced Materials, 2022, 34(38), e2201295. 35 Pan B, Fan J, Zhang J, et al. ACS Energy Letters, 2022, 7(12), 4224. 36 Boutin E, Merakeb L, Ma B, et al. Chemical Society Reviews, 2020, 49(16), 5772. 37 Meshitsuka S, Ichikawa M, Tamaru K. Journal of the Chemical Society, Chemical Communications, 1974,(5), 158. 38 Lieber C M, Lewis N S. Journal of the American Chemical Society, 1984, 106(17), 5033. 39 Schneider J, Jia H, Muckerman J T, et al. Chemical Society Reviews, 2012, 41(6), 2036. 40 Han N, Wang Y, Ma L, et al. Chem, 2017, 3(4), 652. 41 Liu Y, McCrory C C L. Nature Communications, 2019, 10(1), 1683. 42 Jiang Z, Zhang Z, Li H, et al. Advanced Energy Materials, 2022, 13(6), 2203603. 43 Kortlever R, Balemans C, Kwon Y, et al. Catalysis Today, 2015, 244, 58. 44 Wang Y, Wang C, Wei Y, et al. Chemistry-A European Journal, 2022, 28(58), e202201832. 45 Qiao Y, Lai W, Huang K, et al. ACS Catalysis, 2022, 12(4), 2357. 46 Li L, Liu Z, Yu X, et al. Angewandte Chemie International Edition, DOI: 10.1002/ange.202300226. 47 Chen X Y, Chen J F, Alghoraibi N M, et al. Nature Catalysis, 2021, 4(1), 20. 48 Gu J, Liu S, Ni W, et al. Nature Catalysis, 2022, 5(4), 268. 49 Xie Y, Ou P, Wang X, et al. Nature Catalysis, 2022, 5(6), 564. 50 Zhao Y, Hao L, Ozden A, et al. Nature Synthesis, DOI: 10.1038/s44160-022-00234-x. 51 Nie W, Heim G P, Watkins N B, et al. Angewandte Chemie Internatio-nal Edition, 2023, 62(12), e202216102. 52 Zhang J, Guo C, Fang S, et al. Nature Communications, 2023, 14, 1298. 53 Cao Y, Chen Z, Li P, et al. Nature Communications, 2023, 14, 2387. 54 Cobb S J, Badiani V M, Dharani A M, et al. Nature Chemistry, 2022, 14(4), 417.