Please wait a minute...
材料导报  2024, Vol. 38 Issue (15): 23030227-10    https://doi.org/10.11896/cldb.23030227
  高分子与聚合物基复合材料 |
构建多活性位点的单组分金属卤化物@吡啶/咪唑多孔有机框架用于CO2的高效吸收与催化
刘方旺1,*, 王建花1, 于明月1, 张莉1, 张倩1, 孟建华1, 高庆平1, 江津河2
1 潍坊职业学院化学工程学院,环渤海绿色化工应用技术协同创新中心,山东 潍坊 262737
2 潍坊学院化学化工与环境工程学院,山东 潍坊 261061
Constructing the One-component Metal Halide@Pyridine/Imidazole Porous Organic Frameworks with Multiple Active Sites for Highly Efficient CO2 Adsorption and Catalysis
LIU Fangwang1,*, WANG Jianhua1, YU Mingyue1, ZHANG Li1, ZHANG Qian1, MENG Jianhua1, GAO Qingping1, JIANG Jinhe2
1 Huanbohai Green Chemical Application Technology Collaborative Innovation Center, College of Chemical Engineering, Weifang Vocational College, Weifang 262737, Shandong, China
2 College of Chemical Engineering and Environmental Engineering, Weifang University, Weifang 261061, Shandong, China
下载:  全 文 ( PDF ) ( 23617KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 定向设计的多孔有机框架被认为是提高CO2捕集与利用效率的优异纳米材料。本研究通过ZnCl2催化的氰基离子热聚合反应以及合成后修饰法构建了一系列多活性位点的单组分金属卤化物@吡啶/咪唑多孔有机框架材料(M@PIPOFs),并详细探讨了不同单体浓度和聚合温度对材料结构及性能的影响。作为具有较高比表面积、多层次孔隙结构的多相催化材料,M@PIPOFs同时含有丰富的氢键供体基团、Lewis酸/碱基团和亲核基团,在吸收CO2以及催化CO2与环氧化物耦合制备环状碳酸酯方面表现出极好的性能。结果表明,该类材料对CO2的吸附性能较强,在273 K、100 kPa CO2压力下吸附量最高,为3 093 μmol/g。考察了M@PIPOFs结构和反应条件对其催化性能的影响,结果表明,单组分1.0ZnI2@PIPOF-400-30材料具有最高的催化性能。其能够在无溶剂、无助催化剂的条件下,高活性、高选择性地催化CO2与含有不同终端基团的环氧化物耦合,并以88%~98%的收率生成相对应的环状碳酸酯。此外,该M@PIPOFs催化剂回收简单,具有持久的高稳定性和催化活性。最后,基于对M@PIPOFs材料的表征和催化数据分析,提出了一种可行的多活性位点单组分催化机理。本研究希望能够为后续高效多相催化体系的设计、开发提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘方旺
王建花
于明月
张莉
张倩
孟建华
高庆平
江津河
关键词:  二氧化碳  单组分多相催化剂  耦合反应  环状碳酸酯  多孔有机框架    
Abstract: Porous organic frameworks designed directionally have been regarded as the promising nano-materials for improving the efficiency of CO2 capture and utilization. In this work, a series of one-component metal halide@pyridine/imidazole porous organic frameworks (M@PIPOFs) with multiple active sites were fabricated via ZnCl2-catalyzed cyano ionothermal polymerization and post-synthesis decoration, meanwhile, the influences of different monomer concentration and polymerization temperature on the material structure performance were discussed in detail. As the heterogeneous catalytic materials with a high specific surface area and hierarchical pore structure, M@PIPOFs also contained abundant hydrogen bond donors, Lewis acid/base groups and nucleophilic groups, which exhibited excellent performance in absorbing CO2 and catalyzing the coupling of CO2 and epoxides into cyclic carbonates. The data indicated that these materials showed the slightly higher CO2 adsorption capacity, and the highest uptake capacity of 3 093 μmol/g was afforded at 273 K and 100 kPa CO2 pressure. The effects of M@PIPOFs structure and reaction conditions on the catalytic performance were investigated, the results revealed the single-component 1.0ZnI2@PIPOF-400-30 had the highest catalytic performance. It could catalyze the coupling reaction of CO2 and epoxides containing different terminal groups with high activity and selectivity under solvent/cocatalyst-free condition, and achieve the corresponding cyclic carbonate with the 88%—98% yield. Moreover, the M@PIPOFs catalysts could be simply separated with durable high stability and activity. Finally, based on the characterization and catalytic data analysis of M@PIPOFs, a feasible one-component catalytic mechanism with multiple active sites was proposed, which hoped this research could provide a refe-rence for the subsequent design and development of highly efficient heterogeneous catalytic systems.
Key words:  carbon dioxide    one-component heterogeneous catalyst    coupling reaction    cyclic carbonate    porous organic framework
出版日期:  2024-08-10      发布日期:  2024-08-29
ZTFLH:  TQ203.2  
基金资助: 国家自然科学基金(51541205);潍坊市科学技术发展计划项目(2022GX020);潍坊职业学院博士基金项目
通讯作者:  * 刘方旺,潍坊职业学院副教授(校聘)。2022年6月毕业于青岛科技大学化工学院,获工学博士学位。2022年11月至今,就职于潍坊职业学院化学工程学院。目前主要从事开发新型纳米材料及CO2捕集与催化等方面的研究工作。已发表论文10余篇,包括Chemical Engineering JournalIndustrial & Engineering Chemistry Research、《化工进展》《化学通报》等。liufangwang@sdwfvc.edu.cn   
引用本文:    
刘方旺, 王建花, 于明月, 张莉, 张倩, 孟建华, 高庆平, 江津河. 构建多活性位点的单组分金属卤化物@吡啶/咪唑多孔有机框架用于CO2的高效吸收与催化[J]. 材料导报, 2024, 38(15): 23030227-10.
LIU Fangwang, WANG Jianhua, YU Mingyue, ZHANG Li, ZHANG Qian, MENG Jianhua, GAO Qingping, JIANG Jinhe. Constructing the One-component Metal Halide@Pyridine/Imidazole Porous Organic Frameworks with Multiple Active Sites for Highly Efficient CO2 Adsorption and Catalysis. Materials Reports, 2024, 38(15): 23030227-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23030227  或          http://www.mater-rep.com/CN/Y2024/V38/I15/23030227
1 Fu L P, Ren Z K, Si W Z, et al. Journal of CO2 Utilization, 2022, 66, 102260.
2 Liu Y, Dong K Y, Jiang Q Z. Energy Economics, 2023, 119, 106557.
3 Zhang F, Chen W J, Li W Q. Molecular Catalysis, 2023, 541, 113093.
4 Wu H G, Li H, Zhao W F, et al. Fuel, 2022, 326, 125074.
5 Lim J, Garcia-Esparza A T, Lee J W, et al. Nanoscale, 2022, 14, 9297.
6 Onishi N, Himeda Y. Coordination Chemistry Reviews, 2022, 427, 214767.
7 Wang Z Y, Xie R J, Hong H L, et al. Journal of CO2 Utilization, 2021, 51, 101644.
8 Li D. The regulation of elevated CO2 on anthocyanin synthesis in postharvest strawberry fruit. Ph. D. Thesis, Zhejiang University, China, 2021 (in Chinese).
李栋. 高浓度CO2处理调控采后草莓花色苷合成机制研究. 博士学位论文, 浙江大学, 2021.
9 Zhang Z W, Guo R T, Qin Y, et al. Materials Reports, 2021, 35(21), 21058 (in Chinese).
张中伟, 郭瑞堂, 秦阳, 等. 材料导报, 2021, 35(21), 21058.
10 Rani P, Husain A, Bhasin K K, et al. Inorganic Chemistry, 2022, 61, 6977.
11 Luo R C, Yang Y Y, Chen K C, et al. Journal of Materials Chemistry A, 2021, 9, 20941.
12 Tamura M, Hiwatashi D, Gu Y, et al. Journal of CO2 Utilization, 2021, 54, 101744.
13 Rehman A, Saleem F, Javed F, et al. Journal of Environmental Chemical Engineering, 2021, 9, 105113.
14 Wang T T. Construction of ionic liquid immobilized MOF and its application in CO2 cycloaddition reaction. Ph. D. Thesis, Dalian University of Technology, China, 2021 (in Chinese).
王童童. 离子液体固载化MOF的构建及在CO2环加成反应中的应用. 博士学位论文, 大连理工大学, 2021.
15 Liu J. Green synthesis of epoxides and cyclic carbonates. Ph. D. Thesis, Nanjing University, China, 2021 (in Chinese).
刘甲. 环氧化合物及环状碳酸酯绿色合成研究. 博士学位论文, 南京大学, 2021.
16 Aomchad V, Gobbo S D, Yingcharoen P, et al. Catalysis Today, 2021, 375, 324.
17 Sohail A, Sarfraz M, Nawaz S, et al. Journal of Cleaner Production, 2023, 399, 136617.
18 Nandigama S K, Bheeram V R, Mukkamala S B. Environmental Chemistry Letters, 2018, 17, 447.
19 Jiang W F, Li X S, Gao G, et al. Chemical Engineering Journal, 2022, 445, 136767.
20 Zhang M M, Semiat R, He X Z. Separation and Purification Technology, 2022, 299, 1217784.
21 Zhou J, Chen W C, Sun C Y, et al. ACS Applied Materials & Interfaces, 2017, 9, 11689.
22 Wang Z, Gu Y, Wu H K, et al. Materials Reports, 2022, 36(8), 9 (in Chinese).
王朕, 顾洋, 吴宏坤, 等. 材料导报, 2022, 36(8), 9.
23 Liu F W, Du S S, Zhang W W, et al. Chemical Engineering Journal, 2022, 435, 134921.
24 Liu M S, Zhao P H, Zhang W W, et al. Fuel, 2022, 315, 123230.
25 Cui C Y, Sa R J, Hong Z X, et al. ChemSusChem, 2020, 13, 180.
26 Wang Y L, Zhang Z M, Ding C, et al. Journal of CO2 Utilization, 2021, 52, 101673.
27 Zhang G Y, Zhao J, Sun F, et al. Chemical Industry and Engineering Progress, 2022, 41, 177 (in Chinese).
张广宇, 赵健, 孙峰, 等. 化工进展, 2022, 41, 177.
28 Takaishi K, Okuyama T, Kadosaki S, et al. Organic Letters, 2019, 21, 1397.
29 Yang C K, Chen Y L, Wang X, et al. Journal of Colloid and Interface Science, 2022, 618, 44.
30 Foltran S, Mereau R, Tassaing T. Catalysis Science & Technology, 2014, 4, 1585.
31 Liu F W, Duan X R, Dai X, et al. Chemical Engineering Journal, 2022, 445, 136687.
32 Kamiya K, Tatebe T, Yamamura S, et al. ACS Catalysis, 2018, 8, 2693.
33 Luo R, Xu W, Chen M, et al. ChemSusChem, 2020, 13, 6509.
34 Yuan K Y. Study on the synthesis of phthalazinone-based microporous organic polymers and their CO2 capture/separation properties. Ph. D. Thesis, Dalian University of Technology, China, 2019 (in Chinese).
袁宽瑜. 二氮杂萘酮基微孔有机聚合物的制备及其CO2吸附分离性能研究. 博士学位论文, 大连理工大学, 2019.
35 Liu F W, Duan X R, Liu M S, et al. Industrial & Engineering Chemistry Research, 2021, 60, 15027.
36 Zhu H, Lin W J, Li Q, et al. ACS Applied Materials & Interfaces, 2020, 12, 8614.
37 Dang Q Q, Liu C Y, Wang X M, et al. ACS Applied Materials & Interfaces, 2018, 10, 27972.
38 Huang J H, Li Y C, Wang Y K, et al. Dyes and Pigments, 2018, 153, 1.
39 Osadchii D Y, Olivos-Suarez A I, Bavykina A V, et al. Langmuir, 2017, 33, 14278.
40 He P J, Huang L H, Wu X Y, et al. Catalysts, 2018, 8, 239.
41 Xu X Q, Cao L H, Yang Y, et al. Chemistry-An Asian Journal, 2021, 16, 142.
42 Bai X J, Song S N, Zhuo Z Y, et al. Materials Reports, 2023, 37(5), 206 (in Chinese).
白小杰, 宋生南, 桌祖优, 等. 材料导报, 2023, 37(5), 206.
43 Li L J, Wang Y, Gu X, et al. Chemistry-An Asian Journal, 2016, 11, 1913.
44 Wang X, Yang L, Chen Y L, et al. Industrial & Engineering Chemistry Research, 2020, 59, 21018.
45 Xiong L F. Functionalization of MIL-101 for CO2 cycloaddition catalysis. Ph. D. Thesis, East China Normal University, China, 2022 (in Chinese).
熊丽飞. 面向CO2环加成催化反应的MIL-101功能化研究. 博士学位论文, 华东师范大学, 2022.
46 Liu M S, Zhao P F, Ping R, et al. Chemical Engineering Journal, 2020, 399, 125682.
47 Roeser J, Kailasam K, Thomas A. ChemSusChem, 2012, 5(9), 1793.
48 Lin Y F, Huang K W, Ko B T, et al. Journal of CO2 Utilization, 2017, 22, 178.
49 Wang X, Liu M S, Yang L, et al. ChemistrySelect, 2018, 3(15), 4101.
50 Schoepff L, Monnereau L, Durot S, et al. ChemCatChem, 2020, 12(22), 5826.
51 Wang H, Liu G, Hao X, et al. ChemistrySelect, 2021, 6, 3712.
52 Gou F, Liu J, Ye N, et al. Journal of CO2 Utilization, 2021, 48, 101534.
53 Li H, Li C Z, Chen J, et al. Chemistry-An Asian Journal, 2017, 12, 1095.
54 Wang J Y, Liang Y T, Zhou D G, et al. Organic Chemistry Frontiers, 2018, 5, 741.
55 Liu M S, Ma C, Cheng X, et al. Separation and Purification Technology, 2023, 317(15), 123937.
[1] 孙亚洲, 徐沙, 邹金含, 吴智华, 谢顺吉. 二氧化碳电催化还原酸性体系研究进展[J]. 材料导报, 2024, 38(8): 23040216-6.
[2] 许丹, 于彩莲, 李芬, 杨莹, 李博琳, 芦柳, 蔺宇晨. CO2还原光催化材料研究进展[J]. 材料导报, 2024, 38(14): 23030280-8.
[3] 高怡萱, 潘杰, 李焰, 张建, 李阳. 超临界二氧化碳输送管道内腐蚀研究进展[J]. 材料导报, 2024, 38(12): 22120216-8.
[4] 平凡, 赵宝艳, 包锦标, 张利. EPDM对VMQ硅橡胶泡沫发泡行为及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080090-5.
[5] 李松琦, 曲家福, 胡俊蝶, 杨晓刚, 李长明. 光热催化二氧化碳还原合成高附加值化学品的研究进展[J]. 材料导报, 2023, 37(22): 22050159-8.
[6] 周美洁, 艾立群, 洪陆阔, 孙彩娇, 周玉青, 孟凡峻. 氢冶金基础研究和新工艺探索[J]. 材料导报, 2023, 37(13): 21080052-6.
[7] 李林坤, 刘琦, 黄天勇, 李扬, 彭勃. 基于水泥基材料的CO2矿化封存利用技术综述[J]. 材料导报, 2022, 36(19): 20100295-9.
[8] 范龄元, 张梅, 郭敏. 二氧化硅气凝胶的制备、氨基改性及低温吸附CO2性能研究进展[J]. 材料导报, 2022, 36(15): 20120056-8.
[9] 朱烨森, 刘梁, 徐云泽, 王晓娜, 刘刚, 黄一. 溶液pH和温度对X65管线钢焊缝非均匀腐蚀的影响[J]. 材料导报, 2022, 36(1): 20090152-7.
[10] 王凯, 冯东, 赵文波. 尿素醇解法制备甘油碳酸酯催化剂的研究进展[J]. 材料导报, 2021, 35(Z1): 541-547.
[11] 白央, 徐成成, 赵洋, 张荣, 刘清亭, 付旭东, 胡圣飞. 超临界流体制备氮化硼纳米片的研究进展[J]. 材料导报, 2021, 35(7): 7071-7076.
[12] 伍书祺, 黄泽皑, 李晴川, 饶志强, 周莹. Nb2O5/BiOClⅡ型异质结的构建及增强光催化还原二氧化碳[J]. 材料导报, 2021, 35(6): 6001-6007.
[13] 孙延勇, 朱伟芳, 缑敏敏, 郭瑞丽. 埃洛石纳米管结构改性后用于Pebax基质中强化气体分离[J]. 材料导报, 2021, 35(6): 6174-6179.
[14] 张中伟, 郭瑞堂, 秦阳, 郭德宇, 潘卫国. 金属有机框架材料在光催化还原CO2中的应用[J]. 材料导报, 2021, 35(21): 21058-21070.
[15] 李龙泰, 张春杰, 罗学彬, 杨彬, 郭利民. 用于CO2催化加氢In2O3基催化剂的研究进展[J]. 材料导报, 2021, 35(21): 21071-21078.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed