Please wait a minute...
材料导报  2023, Vol. 37 Issue (22): 22050159-8    https://doi.org/10.11896/cldb.22050159
  高分子与聚合物基复合材料 |
光热催化二氧化碳还原合成高附加值化学品的研究进展
李松琦, 曲家福*, 胡俊蝶, 杨晓刚, 李长明*
苏州科技大学材料科学与工程学院,江苏 苏州 215009
Research Progress of Photothermal Catalytic CO2 to High Value-added Chemicals
LI Songqi, QU Jiafu*, HU Jundie, YANG Xiaogang, LI Changming*
School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
下载:  全 文 ( PDF ) ( 13620KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 由于能源的大量消耗以及“碳中和、碳达峰”目标的提出,将CO2转化为CO、CH4以及C2+等高附加值化学品成为研究热点。光热协同是一种新兴的催化技术,可以有效结合热催化反应速率高以及光催化能耗低的优点,通过光热催化CO2合成高附加值化学品具有重要的应用价值。本文重点归纳了光热催化CO2转化的机理以及光热催化材料的研究现状,并对光热催化CO2还原体系(催化剂改性、产物选择性提升等方面)的发展进行了总结和展望,为开发高效稳定的光热催化材料以及光热协同技术在能源和环境领域的应用提供了思路与指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李松琦
曲家福
胡俊蝶
杨晓刚
李长明
关键词:  光热协同技术  光热催化材料  二氧化碳转化  高附加值化学品    
Abstract: Ever-increasing fossil-fuel combustion has led to a dramatic increase in carbon dioxide (CO2) concentrations around the globe. The concept of converting CO2 into high-value-added chemicals such as CO, CH4, and C2+ becomes great significance and urgency toward achieving carbon neutrality and carbon peaking. Photothermal catalysis as an emerging technology has gained immense attention because it combined the merits of thermal catalysis and photocatalysis. Despite these advantages, solar-to-thermal conversion efficiency and intrinsic reaction mechanism remain the technological challenges of our time. Selective suitable materials and tailored structures are favored to improve the optical properties and reduce heat losses. Accordingly, we have summarized the research and development of photothermal materials, with emphasis on the me-chanism of CO2 conversion. Additionally, the improving strategies of photothermal catalysts including heterojunction construction, metal loading, structure regulation, and defect engineering, etc. are reviewed. It is believed that this review will provide a strategy and guidance for the construction of highly efficient photothermal materials, as well as the application in energy and environment fields.
Key words:  photothermal synergistic catalysis    photothermal catalytic material    carbon dioxide conversion    high value-added chemical
出版日期:  2023-11-25      发布日期:  2023-11-21
ZTFLH:  TB34  
基金资助: 江苏省自然科学基金 (BK20210867);江苏省高等学校自然科学研究面上项目 (21KJB150038;20KJB150042);江苏省双创博士 (202030774);国家自然科学基金 (22008163;U1604121)
通讯作者:  * 曲家福,副教授、硕士研究生导师。2015年6月山东理工大学应用化学专业本科毕业,2018年9月到新加坡国立大学联合培养一年,2020年6月苏州大学应用化学专业博士毕业,毕业后于2020年12月入职苏州科技大学材料科学与工程学院,长期从事纳米复合功能材料的制备及其在大气、水等有机/无机污染物处理方面的研究。迄今以第一/通信作者在Angew.Chem.Int.Ed.、Nat.Commun.、Appl.Catal.B-Environ.、Small、Carbon、ACS Sustainable Chem.Eng.、Appl.Surf.Sci.、J.Colloid Interface Sci.、ChemCatChem等期刊上发表高质量SCI论文10余篇;总被引200余次;主持科研项目2项;申请/授权国家发明专利3件。
李长明,教授、博士研究生导师。1970年8月中国科学技术大学近代化学系本科毕业,1983年8月和1986年8月分别于武汉大学物理化学专业获得理学硕士和理学博士学位。2017年1月至今在苏州科技大学材料科学与工程学院担任院长,主要研究兴趣包括功能材料(能源,生物)、清洁能源(锂电池,燃料电池,氢能源,超级电容器,太阳能电池等)、生物传感与芯片。已发表700多篇 SCI 顶尖论文,SCI 总引用42 000多次,H因子97,国际/国内学术大会主题或邀请报告200多次。拥有中国、美国及新加坡专利320项,产业化成就突出,专利在中国和美国产生超百亿产值,承担重大科研项目总经费2.3亿人民币。美国医学与生物工程院院士、欧洲科学院院士、俄罗斯工程院外籍院士、英国皇家化学会会士,国际薄膜学会会士。荣获中国医学科技二等奖、中国产学研合作创新奖、中国侨联创新奖等多项高质量奖项。qjf@usts.edu.cn;ecmli@swu.edu.cn   
作者简介:  李松琦,苏州科技大学硕士研究生。2021年6月苏州科技大学功能材料专业本科毕业。2021年9月至今,在苏州科技大学材料科学与工程学院攻读硕士学位。在李长明教授和曲家福副教授的指导下进行研究,目前主要从事负载型金属纳米材料的制备及其光热性能研究。
引用本文:    
李松琦, 曲家福, 胡俊蝶, 杨晓刚, 李长明. 光热催化二氧化碳还原合成高附加值化学品的研究进展[J]. 材料导报, 2023, 37(22): 22050159-8.
LI Songqi, QU Jiafu, HU Jundie, YANG Xiaogang, LI Changming. Research Progress of Photothermal Catalytic CO2 to High Value-added Chemicals. Materials Reports, 2023, 37(22): 22050159-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050159  或          http://www.mater-rep.com/CN/Y2023/V37/I22/22050159
1 Hu J D, Chen C, Zheng Y, et al. Small, 2020, 16(37), 2002988.
2 Shih C F, Zhang T, Li J H, et al. Joule, 2018, 2(10), 1925.
3 Yang X G, Liu R, He Y M, et al. Nano Research, 2014, 8(1), 56.
4 Zhao Y F, Gao W, Li S W, et al. Joule, 2019, 3(4), 920.
5 Le Quéré C, Andres R J, Boden T, et al. Earth System Science Data, 2013, 5(1), 165.
6 Tahir M, Tahir B. Chemical Engineering Journal, 2020, 400, 125868.
7 The Keeling Curve is a daily record of global atmospheric carbon dioxide concentration maintained by Scripps Institution of Oceanography at UC San Diego. https://keelingcurve. ucsd. edu/.
8 Yi Q, Li W Y, Feng J, et al. Chemical Society Reviews, 2015, 44(15), 5409.
9 Sadat W I A, Archer L A. Science Advances, 2016, 2(7), 1600968.
10 Tahir M. Journal of CO2 Utilization, 2020, 37, 134.
11 Siakavelas G I, Charisiou N D, Alkhoori S, et al. Applied Catalysis B: Environmental, 2021, 282, 119562.
12 Singhal N, Goyal R, Kumar U. Energy & Fuels, 2017, 31(11), 12434.
13 Chernyak S A, Ivanov A S, Stolbov D N, et al. Carbon, 2020, 168, 475.
14 Das S, Perez-Ramirez J, Gong J L, et al. Chemical Society Reviews, 2020, 49(10), 2937.
15 Wang Z J, Song H, Liu H M, et al. Angewandte Chemie International Edition, 2020, 59(21), 8016.
16 Habisreutunger S N, Schmidt-Mende L, Stolarczyk J K. Angewandte Chemie International Edition, 2013, 125(29), 7516.
17 Pei Y H, Zhong H, Jin F M. Energy Science & Engineering, 2021, 9(7), 1012.
18 Wang Y N, Meng Z H, Chen H, et al. Journal of Materials Chemistry C, 2019, 7(7), 1966.
19 Li H, Opgenorth P H, Wernick D G, et al. Science, 2012, 335(6076), 1596.
20 Kattel S, Liu P, Chen J G. Journal of the American Chemical Society, 2017, 139(29), 9739.
21 Nikokavoura A, Trapalis C. Applied Surface Science, 2017, 391, 149.
22 Gui M M, Lee W P C, Putri L K, et al. Frontiers in Chemical Enginee-ring, 2021, 3, 744911.
23 Chen J P, Du X F, Yu T J, et al. Imaging Science and Photochemistry, 2015, 33(5), 358(in Chinese).
陈金平, 都新丰, 于天君, 等. 影像科学与光化学, 2015, 33(5), 358.
24 Qu J F, Chen D Y, Li N J, et al. Applied Catalysis B: Environmental, 2019, 256, 117877.
25 Ghoussoub M, Xia M K, Duchesne P N, et al. Energy & Environmental Science, 2019, 12(4), 1122.
26 Han B, Wei W, Chang L, et al. ACS Catalysis, 2015, 6(2), 494.
27 Liu H M, Meng X G, Dao T D, et al. Journal of Materials Chemistry A, 2017, 5(21), 10567.
28 Robatjazi H, Zhao H Q, Swearer D F, et al. Nature Communications, 2017, 8(1), 27.
29 Zhang X, Li X Q, Zhang D, et al. Nature Communications, 2017, 8, 14542.
30 Li D S, Huang Y, Li S M, et al. Chinese Journal of Catalysis, 2020, 41(1), 154.
31 Liu D L, Wang C H, Yu Y F, et al. Chem, 2019, 5(2), 376.
32 Sun M Y, Zhao B H, Chen F P, et al. Chemical Engineering Journal, 2021, 408, 127280.
33 Lin L L, Wang K, Yang K, et al. Applied Catalysis B: Environmental, 2017, 204, 440.
34 Bai Y J, Zhao J, Feng S J, et al. Chemical Communications, 2019, 55(32), 4651.
35 Ma R, Sun J, Li D H, et al. International Journal of Hydrogen Energy, 2020, 45(55), 30288.
36 Zhang H B, Wang T, Wang J J, et al. Advanced Materials, 2016, 28(19), 3703.
37 Wang L C, Wang Y, Cheng Y, et al. Journal of Materials Chemistry A, 2016, 4(14), 5314.
38 Awazu K, Fujimaki M, Rockstuhl C, et al. Journal of the American Chemical Society, 2008, 130(5), 1676.
39 Brus L. Accounts of Chemical Research, 2008, 41(12), 1742.
40 Wang P, Huang B B, Dai Y, et al. Physical Chemistry Chemical Physics, 2012, 14(28), 9813.
41 Gelle A, Jin T, De La Garza L, et al. Chemical Reviews, 2020, 120(2), 986.
42 Mateo D, Cerrillo J L, Durini S, et al. Chemical Society Reviews, 2021, 50(3), 2173.
43 Aslam U, Rao V G, Chavez S, et al. Nature Catalysis, 2018, 1(9), 656.
44 Kale M J, Christopher P. Science, 2015, 349(6248), 587.
45 Linic S, Aslam U, Boerigter C, et al. Nature Materials, 2015, 14(6), 567.
46 Choi C H, Chung K, Nguyen T T H, et al. ACS Energy Letters, 2018, 3(6), 1415.
47 Yu S J, Wilson A J, Kumari G, et al. ACS Energy Letters, 2017, 2(9), 2058.
48 Zhang Y C, He S, Guo W X, et al. Chemical Reviews, 2017, 118(6), 2927.
49 Zhang F, Li Y H, Qi M Y, et al. Chem Catalysis, 2021, 1(2), 272.
50 Dona-Rodriguez J M, Pulido M E. Nanomaterials, 2021, 11(3), 688.
51 Sun Z Y, Talreja N, Tao H C, et al. Angewandte Chemie International Edition, 2018, 57(26), 7610.
52 Fan Q, Wu L, Liang Y, et al. Applied Energy, 2021, 292, 116871.
53 Vélez-Cordero J R, Hernández-Corderob J. International Journal of Thermal Sciences, 2015, 96, 12.
54 Fu Z W, Jiang K X, Qiu X Q, et al. Materials Today, 2020, 32, 222.
55 Jia J, O’brien P G, He L, et al. Advanced Science, 2016, 3(10), 1600189.
56 Grote R, Habets R, Rohlfs J, et al. ChemCatChem, 2020, 12(22), 5618.
57 Schuermans S, Maurer T, Martin J, et al. Optical Materials Express, 2017, 7(6), 1787.
58 Boccuzzi F, Chiorino A, Manzoli M, et al. Journal of Catalysis, 1999, 188(1), 176.
59 Gao P, Wang P, Liu X L, et al. Catalysis Science & Technology, 2022, 12, 1628.
60 Yoshihara J, Campbell C T. Journal of Catalysis, 1996, 161(2), 776.
61 Wang G C, Nakamura J. The Journal of Physical Chemistry Letters, 2010, 1(20), 3053.
62 Wang L, Dong Y C, Yan T J, et al. Nature Communications, 2020, 11(1), 2432.
63 Hoch L B, O’brien P G, Jelle A, et al. ACS Nano, 2016, 10(9), 9017.
64 Qi Y H, Song L Z, Ouyang S X, et al. Advanced Materials, 2020, 32(6), 1903915.
65 Loh J Y Y, Ye Y, Kherani N P. ACS Applied Materials & Interfaces, 2020, 12(2), 2234.
66 Lang X D, He L N. The Chemical Record, 2016, 16(3), 1337.
67 Meng X G, Wang T, Liu L Q, et al. Angewandte Chemie International Edition, 2014, 53(43), 11478.
68 Ji X Y, Su Z G, Wang P, et al. Small, 2016, 12(34), 4753.
69 Chen G B, Waterhouse G I N, Shi R, et al. Angewandte Chemie International Edition, 2019, 58(49), 17528.
70 Studt F, Sharafutdinov I, Abild-Pedersen F, et al. Nature Chemistry, 2014, 6(4), 320.
71 Wu P P, Yang B. ACS Catalysis, 2017, 7(10), 7187.
72 Posada-Pérez S, Ramírez P J, Gutiérrez R A, et al. Catalysis Science & Technology, 2016, 6(18), 6766.
73 Wang L C, Ha M N, Liu Z F, et al. Integrated Ferroelectrics, 2016, 172(1), 97.
74 Nizio M, Albarazi A, Cavadias S, et al. International Journal of Hydrogen Energy, 2016, 41(27), 11584.
75 Wang L, Yi Y H, Guo H C, et al. ACS Catalysis, 2017, 8(1), 90.
76 Zhang W B, Wang L B, Wang K W, et al. Small, 2017, 13(7), 1602583.
77 Zhou W, Cheng K, Kang J C, et al. Chemical Society Reviews, 2019, 48, 3193.
78 Sai P P S, Bae J W, Jun K W, et al. Catalysis Surveys from Asia, 2008, 12(3), 170.
79 Ojeda M, Nabar R, Nilekar A U, et al. Journal of Catalysis, 2010, 272(2), 287.
80 Wang L M, Zhang Y C, Gu X J, et al. Catalysis Science & Technology, 2018, 8(2), 601.
81 Kang J C, Cheng K, Zhang L, et al. Angewandte Chemie International Edition, 2011, 50(22), 5200.
82 Li P Y, Liu L, An W J, et al. Applied Catalysis B: Environmental, 2020, 266, 118618.
83 Dorner R W, Hardy D R, Williams F W, et al. Energy & Environmental Science, 2010, 3(7), 884.
84 Chen G B, Gao R, Zhao Y F, et al. Advanced Materials, 2018, 30(3), 1704663.
[1] 赵浩成, 刘翠荣, 姚志广, 张莹, 张志超, 刘茜秀. 应用于静电键合的透光聚氨酯弹性体阴极材料的研究[J]. 材料导报, 2023, 37(22): 22060160-6.
[2] 许松江, 许志彦, 侯泽明, 宝冬梅, 周国永, 邹光龙. 环氧树脂/DOPS衍生物复合材料的阻燃性能及热降解行为[J]. 材料导报, 2023, 37(22): 22070044-7.
[3] 孟真, 李广德, 崔光振, 王义, 刘东青, 程海峰. 基于超材料的红外/雷达兼容隐身材料研究进展[J]. 材料导报, 2023, 37(21): 22040001-8.
[4] 范青青, 安立宝, 常春蕊, 张志明, 贾晓彤. 石墨烯负载Pdn(n=1—3)原子/团簇吸附三氯甲烷分子的第一性原理研究[J]. 材料导报, 2023, 37(21): 22050174-6.
[5] 王世杰, 杨杰, 马硕, 韩硕, 王龙, 段国林. 机器学习在功能梯度材料设计-制备中的应用综述[J]. 材料导报, 2023, 37(21): 22030237-9.
[6] 方桂花, 赵茂森, 孙鹏博. 基于棕榈酸-硬脂酸/膨胀石墨定形复合相变储能材料的制备与表征[J]. 材料导报, 2023, 37(20): 22030005-7.
[7] 王信刚, 雷为愉, 朱街禄, 张晨阳. 可逆热致变色相变微胶囊的热响应及光热转换性能[J]. 材料导报, 2023, 37(20): 22030234-6.
[8] 蒋佳骏, 吴张永, 朱启晨. 水基Ni0.5Zn0.5Fe2O4-SiC二元混合磁流体的稳定性、流变性、热物性与低速润滑性[J]. 材料导报, 2023, 37(20): 22040257-8.
[9] 张理元, 李燕, 税亿, 张菁菁, 吴娜, 阳金菊. 膨润土改性偏钛酸型钛锂离子筛及吸附性能研究[J]. 材料导报, 2023, 37(19): 22030244-7.
[10] 张宇, 郭文龙, 梁李斯, 弥晗, 马洪月, 张自恒, 李林波. 泡沫金属及其复合结构吸声性能优化[J]. 材料导报, 2023, 37(19): 22060014-8.
[11] 师甜甜, 杜立飞, 张海锋, 田闰博. 水基吸波超材料的研究进展[J]. 材料导报, 2023, 37(18): 21120076-7.
[12] 董栋, 苏海军, 李翔, 赵迪, 樊光娆, 申仲琳, 刘园. 光固化3D打印磷酸钙基生物陶瓷支架的研究进展[J]. 材料导报, 2023, 37(18): 22010288-9.
[13] 陈国晶, 王宇博, 邓顺利, 林欢, 王国军, 李万利. 共混法制备吸燃油自密封复合材料及其性能研究[J]. 材料导报, 2023, 37(18): 22020050-6.
[14] 韦秋红, 褚海亮, 夏永鹏, 邱树君, 温鑫, 徐芬, 孙立贤. 氨硼烷水解制氢催化剂的研究进展[J]. 材料导报, 2023, 37(17): 21110116-12.
[15] 马江微, 翟海潮, 张紫薇, 胡季帆. MOFs衍生的Sn掺杂In2O3材料的制备及氯气气敏性能[J]. 材料导报, 2023, 37(16): 23040030-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed