Abstract: Ever-increasing fossil-fuel combustion has led to a dramatic increase in carbon dioxide (CO2) concentrations around the globe. The concept of converting CO2 into high-value-added chemicals such as CO, CH4, and C2+ becomes great significance and urgency toward achieving carbon neutrality and carbon peaking. Photothermal catalysis as an emerging technology has gained immense attention because it combined the merits of thermal catalysis and photocatalysis. Despite these advantages, solar-to-thermal conversion efficiency and intrinsic reaction mechanism remain the technological challenges of our time. Selective suitable materials and tailored structures are favored to improve the optical properties and reduce heat losses. Accordingly, we have summarized the research and development of photothermal materials, with emphasis on the me-chanism of CO2 conversion. Additionally, the improving strategies of photothermal catalysts including heterojunction construction, metal loading, structure regulation, and defect engineering, etc. are reviewed. It is believed that this review will provide a strategy and guidance for the construction of highly efficient photothermal materials, as well as the application in energy and environment fields.
李松琦, 曲家福, 胡俊蝶, 杨晓刚, 李长明. 光热催化二氧化碳还原合成高附加值化学品的研究进展[J]. 材料导报, 2023, 37(22): 22050159-8.
LI Songqi, QU Jiafu, HU Jundie, YANG Xiaogang, LI Changming. Research Progress of Photothermal Catalytic CO2 to High Value-added Chemicals. Materials Reports, 2023, 37(22): 22050159-8.
1 Hu J D, Chen C, Zheng Y, et al. Small, 2020, 16(37), 2002988. 2 Shih C F, Zhang T, Li J H, et al. Joule, 2018, 2(10), 1925. 3 Yang X G, Liu R, He Y M, et al. Nano Research, 2014, 8(1), 56. 4 Zhao Y F, Gao W, Li S W, et al. Joule, 2019, 3(4), 920. 5 Le Quéré C, Andres R J, Boden T, et al. Earth System Science Data, 2013, 5(1), 165. 6 Tahir M, Tahir B. Chemical Engineering Journal, 2020, 400, 125868. 7 The Keeling Curve is a daily record of global atmospheric carbon dioxide concentration maintained by Scripps Institution of Oceanography at UC San Diego. https://keelingcurve. ucsd. edu/. 8 Yi Q, Li W Y, Feng J, et al. Chemical Society Reviews, 2015, 44(15), 5409. 9 Sadat W I A, Archer L A. Science Advances, 2016, 2(7), 1600968. 10 Tahir M. Journal of CO2 Utilization, 2020, 37, 134. 11 Siakavelas G I, Charisiou N D, Alkhoori S, et al. Applied Catalysis B: Environmental, 2021, 282, 119562. 12 Singhal N, Goyal R, Kumar U. Energy & Fuels, 2017, 31(11), 12434. 13 Chernyak S A, Ivanov A S, Stolbov D N, et al. Carbon, 2020, 168, 475. 14 Das S, Perez-Ramirez J, Gong J L, et al. Chemical Society Reviews, 2020, 49(10), 2937. 15 Wang Z J, Song H, Liu H M, et al. Angewandte Chemie International Edition, 2020, 59(21), 8016. 16 Habisreutunger S N, Schmidt-Mende L, Stolarczyk J K. Angewandte Chemie International Edition, 2013, 125(29), 7516. 17 Pei Y H, Zhong H, Jin F M. Energy Science & Engineering, 2021, 9(7), 1012. 18 Wang Y N, Meng Z H, Chen H, et al. Journal of Materials Chemistry C, 2019, 7(7), 1966. 19 Li H, Opgenorth P H, Wernick D G, et al. Science, 2012, 335(6076), 1596. 20 Kattel S, Liu P, Chen J G. Journal of the American Chemical Society, 2017, 139(29), 9739. 21 Nikokavoura A, Trapalis C. Applied Surface Science, 2017, 391, 149. 22 Gui M M, Lee W P C, Putri L K, et al. Frontiers in Chemical Enginee-ring, 2021, 3, 744911. 23 Chen J P, Du X F, Yu T J, et al. Imaging Science and Photochemistry, 2015, 33(5), 358(in Chinese). 陈金平, 都新丰, 于天君, 等. 影像科学与光化学, 2015, 33(5), 358. 24 Qu J F, Chen D Y, Li N J, et al. Applied Catalysis B: Environmental, 2019, 256, 117877. 25 Ghoussoub M, Xia M K, Duchesne P N, et al. Energy & Environmental Science, 2019, 12(4), 1122. 26 Han B, Wei W, Chang L, et al. ACS Catalysis, 2015, 6(2), 494. 27 Liu H M, Meng X G, Dao T D, et al. Journal of Materials Chemistry A, 2017, 5(21), 10567. 28 Robatjazi H, Zhao H Q, Swearer D F, et al. Nature Communications, 2017, 8(1), 27. 29 Zhang X, Li X Q, Zhang D, et al. Nature Communications, 2017, 8, 14542. 30 Li D S, Huang Y, Li S M, et al. Chinese Journal of Catalysis, 2020, 41(1), 154. 31 Liu D L, Wang C H, Yu Y F, et al. Chem, 2019, 5(2), 376. 32 Sun M Y, Zhao B H, Chen F P, et al. Chemical Engineering Journal, 2021, 408, 127280. 33 Lin L L, Wang K, Yang K, et al. Applied Catalysis B: Environmental, 2017, 204, 440. 34 Bai Y J, Zhao J, Feng S J, et al. Chemical Communications, 2019, 55(32), 4651. 35 Ma R, Sun J, Li D H, et al. International Journal of Hydrogen Energy, 2020, 45(55), 30288. 36 Zhang H B, Wang T, Wang J J, et al. Advanced Materials, 2016, 28(19), 3703. 37 Wang L C, Wang Y, Cheng Y, et al. Journal of Materials Chemistry A, 2016, 4(14), 5314. 38 Awazu K, Fujimaki M, Rockstuhl C, et al. Journal of the American Chemical Society, 2008, 130(5), 1676. 39 Brus L. Accounts of Chemical Research, 2008, 41(12), 1742. 40 Wang P, Huang B B, Dai Y, et al. Physical Chemistry Chemical Physics, 2012, 14(28), 9813. 41 Gelle A, Jin T, De La Garza L, et al. Chemical Reviews, 2020, 120(2), 986. 42 Mateo D, Cerrillo J L, Durini S, et al. Chemical Society Reviews, 2021, 50(3), 2173. 43 Aslam U, Rao V G, Chavez S, et al. Nature Catalysis, 2018, 1(9), 656. 44 Kale M J, Christopher P. Science, 2015, 349(6248), 587. 45 Linic S, Aslam U, Boerigter C, et al. Nature Materials, 2015, 14(6), 567. 46 Choi C H, Chung K, Nguyen T T H, et al. ACS Energy Letters, 2018, 3(6), 1415. 47 Yu S J, Wilson A J, Kumari G, et al. ACS Energy Letters, 2017, 2(9), 2058. 48 Zhang Y C, He S, Guo W X, et al. Chemical Reviews, 2017, 118(6), 2927. 49 Zhang F, Li Y H, Qi M Y, et al. Chem Catalysis, 2021, 1(2), 272. 50 Dona-Rodriguez J M, Pulido M E. Nanomaterials, 2021, 11(3), 688. 51 Sun Z Y, Talreja N, Tao H C, et al. Angewandte Chemie International Edition, 2018, 57(26), 7610. 52 Fan Q, Wu L, Liang Y, et al. Applied Energy, 2021, 292, 116871. 53 Vélez-Cordero J R, Hernández-Corderob J. International Journal of Thermal Sciences, 2015, 96, 12. 54 Fu Z W, Jiang K X, Qiu X Q, et al. Materials Today, 2020, 32, 222. 55 Jia J, O’brien P G, He L, et al. Advanced Science, 2016, 3(10), 1600189. 56 Grote R, Habets R, Rohlfs J, et al. ChemCatChem, 2020, 12(22), 5618. 57 Schuermans S, Maurer T, Martin J, et al. Optical Materials Express, 2017, 7(6), 1787. 58 Boccuzzi F, Chiorino A, Manzoli M, et al. Journal of Catalysis, 1999, 188(1), 176. 59 Gao P, Wang P, Liu X L, et al. Catalysis Science & Technology, 2022, 12, 1628. 60 Yoshihara J, Campbell C T. Journal of Catalysis, 1996, 161(2), 776. 61 Wang G C, Nakamura J. The Journal of Physical Chemistry Letters, 2010, 1(20), 3053. 62 Wang L, Dong Y C, Yan T J, et al. Nature Communications, 2020, 11(1), 2432. 63 Hoch L B, O’brien P G, Jelle A, et al. ACS Nano, 2016, 10(9), 9017. 64 Qi Y H, Song L Z, Ouyang S X, et al. Advanced Materials, 2020, 32(6), 1903915. 65 Loh J Y Y, Ye Y, Kherani N P. ACS Applied Materials & Interfaces, 2020, 12(2), 2234. 66 Lang X D, He L N. The Chemical Record, 2016, 16(3), 1337. 67 Meng X G, Wang T, Liu L Q, et al. Angewandte Chemie International Edition, 2014, 53(43), 11478. 68 Ji X Y, Su Z G, Wang P, et al. Small, 2016, 12(34), 4753. 69 Chen G B, Waterhouse G I N, Shi R, et al. Angewandte Chemie International Edition, 2019, 58(49), 17528. 70 Studt F, Sharafutdinov I, Abild-Pedersen F, et al. Nature Chemistry, 2014, 6(4), 320. 71 Wu P P, Yang B. ACS Catalysis, 2017, 7(10), 7187. 72 Posada-Pérez S, Ramírez P J, Gutiérrez R A, et al. Catalysis Science & Technology, 2016, 6(18), 6766. 73 Wang L C, Ha M N, Liu Z F, et al. Integrated Ferroelectrics, 2016, 172(1), 97. 74 Nizio M, Albarazi A, Cavadias S, et al. International Journal of Hydrogen Energy, 2016, 41(27), 11584. 75 Wang L, Yi Y H, Guo H C, et al. ACS Catalysis, 2017, 8(1), 90. 76 Zhang W B, Wang L B, Wang K W, et al. Small, 2017, 13(7), 1602583. 77 Zhou W, Cheng K, Kang J C, et al. Chemical Society Reviews, 2019, 48, 3193. 78 Sai P P S, Bae J W, Jun K W, et al. Catalysis Surveys from Asia, 2008, 12(3), 170. 79 Ojeda M, Nabar R, Nilekar A U, et al. Journal of Catalysis, 2010, 272(2), 287. 80 Wang L M, Zhang Y C, Gu X J, et al. Catalysis Science & Technology, 2018, 8(2), 601. 81 Kang J C, Cheng K, Zhang L, et al. Angewandte Chemie International Edition, 2011, 50(22), 5200. 82 Li P Y, Liu L, An W J, et al. Applied Catalysis B: Environmental, 2020, 266, 118618. 83 Dorner R W, Hardy D R, Williams F W, et al. Energy & Environmental Science, 2010, 3(7), 884. 84 Chen G B, Gao R, Zhao Y F, et al. Advanced Materials, 2018, 30(3), 1704663.