Please wait a minute...
材料导报  2023, Vol. 37 Issue (21): 22040001-8    https://doi.org/10.11896/cldb.22040001
  无机非金属及其复合材料 |
基于超材料的红外/雷达兼容隐身材料研究进展
孟真1, 李广德2, 崔光振2, 王义2, 刘东青1,*, 程海峰1
1 国防科技大学空天科学学院,新型陶瓷纤维及其复合材料重点实验室,长沙 410073
2 中国人民解放军96901部队25分队,北京 100096
Research Progress of Infrared/Radar Compatible Stealth Materials Based on Metamaterials
MENG Zhen1, LI Guangde2, CUI Guangzhen2, WANG Yi2, LIU Dongqing1,*, CHENG Haifeng1
1 Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace and Engineering, National University of Defense Technology, Changsha 410073, China
2 Unit 96901 of the PLA, Beijing 100096, China
下载:  全 文 ( PDF ) ( 21339KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 运用各种侦察探测手段,实现战场透明化是现代信息化战争的一个基本特点。红外探测和雷达探测被广泛应用于战场,这促使红外/雷达兼容隐身技术成为了对抗探测的研究重点。相较于传统红外/雷达兼容隐身材料,基于超材料的新型红外/雷达兼容隐身材料表现出更加优异的性能。本文对实现红外/雷达兼容隐身的原理和途径进行了阐述,重点综述了基于光子晶体、吸波超材料和编码超材料的红外/雷达兼容隐身材料的研究现状以及进展,并分析了红外/雷达兼容隐身材料的发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孟真
李广德
崔光振
王义
刘东青
程海峰
关键词:  红外/雷达兼容隐身  光子晶体  吸波超材料  编码超材料    
Abstract: Using various reconnaissance and detection means to achieve battlefield transparency is a basic feature of modern informationized warfare. Infrared detection and radar detection are widely used in the battlefield, which makes infrared/radar compatible stealth become the research focus of stealth technology against detection. Compared with the traditional infrared/radar compatible stealth materials, the new infrared/radar compatible stealth materials based on metamaterials exhibit better performance. In this paper, the principle and path of achieving infrared/radar compatible stealth are expounded, and the research status and progress of infrared/radar compatible stealth materials based on photonic crystals, absorbing metamaterials andcoding metamaterials are reviewed, and the development trend of infrared/radar compatible stealth mate-rials is analyzed.
Key words:  infrared/radar compatible stealth    photonic crystal    absorbing metamaterial    coding metamaterials
出版日期:  2023-11-10      发布日期:  2023-11-10
ZTFLH:  TB34  
基金资助: 国家自然科学基金(52073303);湖南省自然科学基金(2021JJ10049)
通讯作者:  *刘东青,国防科技大学空天科学学院副教授、硕士研究生导师。2014年获国防科技大学材料科学与工程博士学位。目前主要从事红外辐射调控材料及其在自适应伪装、红外隐身和智能热控等技术的应用研究工作。发表论文60余篇,包括Science Advances、Advanced Optical Materials、Journal of Materials Chemistry C、Solar Energy Mate-rials and Solar Cells等。liudongqing07@nudt.edu.cn   
作者简介:  孟真,2018年6月、2020年12月于空军工程大学分别获得工学学士学位和硕士学位。现为国防科技大学空天科学学院博士研究生,在程海峰研究员和刘东青副教授的指导下进行研究。目前主要研究领域为伪装隐身材料。
引用本文:    
孟真, 李广德, 崔光振, 王义, 刘东青, 程海峰. 基于超材料的红外/雷达兼容隐身材料研究进展[J]. 材料导报, 2023, 37(21): 22040001-8.
MENG Zhen, LI Guangde, CUI Guangzhen, WANG Yi, LIU Dongqing, CHENG Haifeng. Research Progress of Infrared/Radar Compatible Stealth Materials Based on Metamaterials. Materials Reports, 2023, 37(21): 22040001-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040001  或          http://www.mater-rep.com/CN/Y2023/V37/I21/22040001
1 Ma C Y, Cheng H F, Tang G P, et al. Materials Reports, 2007, 21(1), 126 (in Chinese).
马成勇, 程海峰, 唐耿平, 等. 材料导报, 2007, 21(1), 126.
2 Zhong S, Wu L, Liu T, et al. Optics Express, 2018, 26(13), 16466.
3 Jang T, Youn H, Shin Y J, et al. ACS Photonics, 2014, 1(3), 279.
4 Zhu H, Li Q, Tao C, et al. Nature Communications, 2021, 12(1), 1805.
5 Zhang J, Liu W, Zhang T, et al. Micronanoelectronic Technology, 2018, 55(2), 91 (in Chinese).
张捷, 刘伟, 张婷, 等. 微纳电子技术, 2018, 55(2), 91.
6 Wang G, Morrin A, Li M, et al. Journal of Materials Chemistry B, 2018, 6(25), 4173.
7 Li Z T, Ye M Q, Han A J, et al. Journal of Materials Science-Materials in Electronics, 2016, 27(1), 1031.
8 Wang Y, Zhang W Z, Wu X M, et al. Synthetic Metals, 2017, 228, 18.
9 Yang C C, Gung Y J, Hung W C, et al. Composites Science and Techno-logy, 2010, 70(3), 466.
10 Xu S Q, Duan Y F. Journal of Airforce Radar Academy, 2001, 15, 45.
11 Zhang J, Huang X G, Chen J, et al. Journal of Functional Materials, 2011, 42(B02), 141 (in Chinese).
张静, 黄啸谷, 陈娇, 等. 功能材料, 2011, 42(B02), 141.
12 Lv H L, Ji G B, Li X G, et al. Journal of Magnetism and Magnetic Materials, 2015, 374, 225.
13 Chiscan O, Dumitru I, Postolache P, et al. Materials Letters, 2012, 68, 251.
14 Pan W L, He M, Bu X H, et al. Journal of Materials Science-Materials in Electronics, 2017, 28(12), 8601.
15 Ma G L, Cao Q X, Huang Y X. Infrared Technology, 2003, 25(4), 77 (in Chinese).
马格林, 曹全喜, 黄云霞. 红外技术, 2003, 25(4), 77.
16 Fernandes G E, Lee D J, Kim J H, et al. Journal of Materials Science, 2013, 48(6), 2536.
17 Shu R W, Xing H L, Cao X L, et al. Nano, 2016, 11(4), 1650047.
18 Yu N, Genevet P, Kats M A, et al. Science, 2011, 334(6054), 333.
19 Li X, Xiao S, Cai B, et al. Optics Letters, 2012, 37(23), 4940.
20 Landy N I, Sajuyigbe S, Mock J J, et al. Physical Review Letters, 2008, 100(20), 207402.
21 Tao H, Bingham C M, Pilon D, et al. Journal of Physics D-Applied Phy-sics, 2010, 43(22), 225102.
22 Yablonovitch E. Physical Review Letters, 1987, 58(20), 2059.
23 John S. Physical Review Letters, 1987, 58(23), 2486.
24 Zhang Y K, Yu M X, Pan S B, et al. Laser & Infrared, 2013, 43(9), 967 (in Chinese).
张塬昆, 于名讯, 潘士兵, 等. 激光与红外, 2013, 43(9), 967.
25 Fleming J G, Lin S Y, El-Kady I, et al. Nature, 2002, 417(6884), 52.
26 Zhang L C, Qiu L L, Lu W, et al. Acta Physica Sinica, 2017, 66(8), 149 (in Chinese).
张连超, 邱丽莉, 芦薇, 等. 物理学报, 2017, 66(8), 149.
27 Wang X, Hu X H, Li Y Z, et al. Applied Physics Letters, 2002, 80(23), 4291.
28 Gao Y F, Shi J M, Zhao D P, et al. Infrared and Laser Engineering, 2012, 41(4), 970 (in Chinese).
高永芳, 时家明, 赵大鹏, 等. 红外与激光工程, 2012, 41(4), 970.
29 Zhang W G, Xu G Y, Zhang J C, et al. Optical Materials, 2014, 37, 343.
30 Miao L, Shi J M, Wang J C, et al. Optical Engineering, 2016, 55(5), 057101.
31 Zhang J K, Liu R H, Zhao D P, et al. Optical Materials Express, 2019, 9(1), 195.
32 Wang Z X, Cheng Y Z, Nie Y, et al. Journal of Applied Physics, 2014, 116(5), 054905.
33 Zhang J K, Shi J M, Zhao D P, et al. Infrared Physics & Technology, 2017, 85, 62.
34 汪家春, 时家明, 李志刚, 等. 中国专利, CN112273747A, 2021.
35 程立, 李志刚, 陈宗胜, 等. 中国专利, CN112346163A, 2021.
36 Yi Y, Deng L W, Luo H, et al. Journal of Central South University(Science and Technology) , 2017, 48(11), 2967 (in Chinese).
易怡, 邓联文, 罗衡, 等. 中南大学学报:自然科学版, 2017, 48(11), 2967.
37 Pan M Y, Huang Y, Li Q, et al. Nano Energy, 2020, 69, 104449.
38 Zhang Z Y, Xu M Z, Ruan X F, et al. Ceramics International, 2017, 43(3), 3443.
39 Zhang L, Wang J, Lou J, et al. Journal of Materials Chemistry C, 2021, 9(42), 15018.
40 Wang X F, Liu D Q, Peng L, et al. Journal of Aeronautical Materials, 2021, 41(5), 1 (in Chinese).
王新飞, 刘东青, 彭亮, 等. 航空材料学报, 2021, 41(5), 1.
41 Tian H, Liu H T, Cheng H F. Chinese Physics B, 2013, 23(2), 025201.
42 刘东青, 程海峰, 彭亮, 等. 中国专利, CN110737035A, 2020.
43 Kim T, Bae J Y, Lee N, et al. Advanced Functional Materials, 2019, 29(10), 1807319.
44 Zhang C, Yang J, Yuan W, et al. Journal of Physics D-Applied Physics, 2017, 50(44), 444002.
45 Zhang C, Wu X, Huang C, et al. Advanced Materials Technologies, 2019, 4(8), 1900063.
46 Feng X, Xie X, Pu M, et al. Optics Express, 2020, 28(7), 9445.
47 Xu C L, Wang B K, Yan M B, et al. Infrared Physics & Technology, 2020, 105, 103108.
48 Zhu R C, Jia Y X, Wang J F, et al. Infrared Physics & Technology, 2021, 117, 103826.
49 Shen Y, Zhang J, Pang Y, et al. Optics Express, 2018, 26(12), 15665.
50 Li H Y, Yuan H, Costa F, et al. Optics Express, 2021, 29(26), 42863.
51 Paquay M, Iriarte J C, Ederra I, et al. IEEE Transactions on Antennas and Propagation, 2007, 55(12), 3630.
52 Galarregui J C I, Pereda A T, de Falcon J L M, et al. IEEE Transactions on Antennas and Propagation, 2013, 61(12), 6136.
53 Cui T J, Qi M Q, Wan X, et al. Light-Science & Applications, 2014, 3(10), e218.
54 Pang Y, Li Y, Yan M, et al. Optics Express, 2018, 26(9), 11950.
55 Xie X, Pu M B, Huang Y J, et al. Advanced Materials Technologies, 2019, 4(2), 1800612.
56 Meng Z, Tian C, Xu C, et al. Optics Express, 2020, 28(19), 27774.
57 Zhong H, Liu N, Yang Z H, et al. ACS Applied Electronic Materials, 2021, 3(11), 4870.
58 Liu T, Meng Y, Ma H, et al. Optics Express, 2021, 29(22), 35891.
59 Tennant A, Chambers B. Smart Materials and Structures, 2003, 13(1), 122.
60 Huang C, Yang J, Ji C, et al. Small Methods, 2021, 5(2), 2000918.
61 Huang C, Ji C, Zhao B, et al. Advanced Materials Technologies, 2021, 6(4), 2001050.
62 Ji H N, Liu D Q, Cheng H F. Materials Science in Semiconductor Processing, 2020, 119, 105141.
63 Tang K, Dong K, Li J, et al. Science, 2021, 374(6574), 1504.
64 Wang S, Jiang T, Meng Y, et al. Science, 2021, 374(6574), 1501.
65 Balci O, Polat E O, Kakenov N, et al. Nature Communications, 2015, 6(1), 1.
66 Li M Y, Liu D Q, Cheng H F, et al. Science Advances, 2020, 6(22), eaba3494.
67 Li M Y, Liu D Q, Cheng H F, et al. Journal of Materials Chemistry C, 2020, 8(25), 8538.
68 Ergoktas M S, Bakan G, Kovalska E, et al. Nature Photonics, 2021, 15(7), 493.
69 Cheng B Z, Zhu Y L, Yin Y, et al. Acta Physica Sinica, 2021, 70(20), 11 (in Chinese).
程柏璋, 祝玉林, 伊洋, 等. 物理学报, 2021, 70(20), 11.
[1] 王均委, 李琳, 齐家瑞, 郑勤红, 姚斌. 圆柱形光子晶体微波反应腔的加热效率和均匀性研究[J]. 材料导报, 2023, 37(4): 21060010-8.
[2] 师甜甜, 杜立飞, 张海锋, 田闰博. 水基吸波超材料的研究进展[J]. 材料导报, 2023, 37(18): 21120076-7.
[3] 童瀚翔, 李红盛, 刘延领, 吴爱民, 黄昊. 红外隐身[Si/MgF2]N一维光子晶体设计与计算[J]. 材料导报, 2022, 36(Z1): 21060196-5.
[4] 赵亚丽, 贾琨, 赵岩, 马玉峰, 李旭峰. 金属光子晶体结构对其透光率强度和曲线宽度的影响[J]. 材料导报, 2021, 35(14): 14171-14175.
[5] 王月敏, 商磊, 闫相桥, 李新刚, 李垚. 基于纳米压痕技术的光子晶体薄膜实验研究与有限元模拟[J]. 材料导报, 2019, 33(14): 2283-2286.
[6] 陈可, 马会茹. pH响应性光子晶体[J]. 《材料导报》期刊社, 2018, 32(7): 1094-1099.
[7] 陈冬阳, 欧阳凌曦, 冯晓旭, 荣康, 杨杰, 王茺, 杨宇. 二维光子晶体微腔的制备及其对硅光学材料的光量子放大[J]. 《材料导报》期刊社, 2018, 32(13): 2189-2194.
[8] 孟佳意, 县泽宇, 李昕, 张德权. 光子晶体纤维的制备及应用*[J]. 《材料导报》期刊社, 2017, 31(5): 106-111.
[9] 徐 键,赵文娟,方 刚,徐清波. 反蛋白石结构光子晶体材料中光传输的仿真研究[J]. 《材料导报》期刊社, 2017, 31(24): 169-173.
[10] 曾 琦, 李青松, 袁 伟, 周 宁, 张克勤. 非晶无序光子晶体结构色机理及其应用[J]. 材料导报, 2017, 31(1): 43-55.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed