Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (13): 2189-2194    https://doi.org/10.11896/j.issn.1005-023X.2018.13.008
  无机非金属及其复合材料 |
二维光子晶体微腔的制备及其对硅光学材料的光量子放大
陈冬阳1,2, 欧阳凌曦1,2, 冯晓旭1,2, 荣康1,2, 杨杰1, 王茺1,2, 杨宇1
1 云南大学云南省微纳材料与技术重点实验室, 昆明 650091;
2 云南大学光电子能源材料国际联合研究中心,昆明 650091
Preparation of 2D-photonic Crystal Microcavity and Its Light Quantum Enhancement of Silicon Optical Materials
CHEN Dongyang1,2, OUYANG Lingxi1,2, FENG Xiaoxu1,2, RONG Kang1,2, YANG Jie1, WANG Chong1,2, YANG Yu1
1 Yunnan Key Laboratory of Micro & Nano Materials and Technology, Yunnan University, Kunming 650091;
2 International Joint Research Center for Optoelectronic Energy Materials,Yunnan University, Kunming 650091
下载:  全 文 ( PDF ) ( 1520KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 光子晶体(PC)可以增加光物质相互作用和光发射效率,在微纳光子学、量子光学及信息光学等领域中都有着广泛的应用。近年来,二维硅基光子晶体微腔的发光增强效应研究取得了较为重大的突破。本文针对现有二维光子晶体及微腔的制备方法与发光性能的调控展开论述,详细介绍了二维光子晶体微腔的制备进程与温度、泵浦能量、微腔结构对微腔Q因子以及发光性能的影响,并进一步展望了二维光子晶体在硅材料光量子放大领域未来研究所面临的问题及应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈冬阳
欧阳凌曦
冯晓旭
荣康
杨杰
王茺
杨宇
关键词:  光子晶体  微腔结构  硅材料  光量子    
Abstract: Photonic crystal can increase light matter interactions and light emission efficiency, and has found extensive application in the fields of nano/micro-optics, quantum optics and information optics, etc. The luminescent enhancement effect of two-dimensional silicon-based photonic crystal microcavities have made significant breakthroughs in recent years. The current preparation method of the two-dimensional photonic crystals and microcavities and the control of their luminescence properties have been discussed. The preparation process of two-dimensional photonic crystal microcavity and the influence of temperature, pump energy and microcavity structure on Q-factor and luminescence properties of microcavity are introduced in detail. Depicts the regulation mechanism of nanocavity structure to luminescence properties of silicon materials, and discusses the problems and prospects of this field.
Key words:  photonic crystal    nanocavity    silicon materials    light quantum
               出版日期:  2018-07-10      发布日期:  2018-08-01
ZTFLH:  TB332  
基金资助: 国家自然科学基金(11564043;11504322); 云南省科技计划面上项目(2016FB002);云南省教育厅重点项目(2015Z017); 云南省中青年学术技术带头人后备人才项目
作者简介:  陈冬阳:男,1993年生,硕士研究生,从事缺陷硅材料发光的研究 E-mail:973004952@qq.com 王茺:通信作者,男,副研究员,主要从事低维纳米光电子材料与器件的研究 E-mail:cwang@ynu.edu.cn
引用本文:    
陈冬阳, 欧阳凌曦, 冯晓旭, 荣康, 杨杰, 王茺, 杨宇. 二维光子晶体微腔的制备及其对硅光学材料的光量子放大[J]. 《材料导报》期刊社, 2018, 32(13): 2189-2194.
CHEN Dongyang, OUYANG Lingxi, FENG Xiaoxu, RONG Kang, YANG Jie, WANG Chong, YANG Yu. Preparation of 2D-photonic Crystal Microcavity and Its Light Quantum Enhancement of Silicon Optical Materials. Materials Reports, 2018, 32(13): 2189-2194.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.13.008  或          http://www.mater-rep.com/CN/Y2018/V32/I13/2189
1 Zhou Zhiping, Yin Bing, Michel Jurgen. On-chip light sources for silicon photonics[J].Light Science & Applications,2015,4(11):e358.
2 Cullis A G, Canham L T. Visible light emission due to quantum size effects in highly porous crystalline silicon[J].Nature,1991,353(6342):335.
3 Pavesi L, Negro L D, Mazzoleni C, et al. Optical gain in silicon nanocrystals[J].Nature,2000,408(6811):440.
4 Hu W, Cheng B, Xue C, et al. Electroluminescence from Ge on Si substrate at room temperature[J].Applied Physics Letters,2009,95(9):1678.
5 Sun X, Liu J, Kimerling L C, et al. Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes[J].Optics Letters,2009,34(8):1198.
6 Yerci S, Li R, Kucheyev S O, et al. Visible and 1.54 m emission from amorphous silicon nitride films by reactive cosputtering[J].IEEE Journal of Selected Topics in Quantum Electronics,2010,16(1):114.
7 Li R, Yerci S, Kucheyev S O, et al. Energy transfer and stimulated emission dynamics at 1.1 μm in Nd-doped SiNx[J].Optics Express,2011,19(6):5379.
8 Zheng J, Ding W C, Xue C L, et al. Highly efficient photoluminescence of Er2SiO5 films grown by reactive magnetron sputtering method[J].Journal of Luminescence,2010,130(3):411.
9 Ni P G. Progress in the fabrication and application of photonic crystals[J].Acta Physica Sinica,2010,59(1):340(in Chinese).
倪培根.光子晶体制备技术和应用研究进展[J].物理学报,2010,59(1):340.
10 Strauf S, Hennessy K, Rakher M T, et al. Self-tuned quantum dot gain in photonic crystal lasers[J].Physical Review Letters,2005,96(12):127404.
11 Wang K, Zheng W H, Ren G, et al. Design and optimization of photonic crystal coupling layer for bi-color quantum well infrared photodetectors[J].Acta Physica Sinica,2008,57(3):1730(in Chinese).
王科,郑婉华,任刚,等.双色量子阱红外探测器顶部光子晶体耦合层的设计优化[J].物理学报,2008,57(3):1730.
12 Gerard J M, Gayral B. Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities[J].Journal of Lightwave Technology,1999,17(11):2089.
13 Herrmann R, Sünner T, Hein T, et al. Ultrahigh-quality photonic crystal cavity in GaAs[J].Optics Letters,2006,31(9):1229.
14 Byeon K J, Hwang S Y, Lee H. Fabrication of two-dimensional photonic crystal patterns on GaN-based light-emitting diodes using thermally curable monomer-based nanoimprint lithography[J].Applied Physics Letters,2007,91(9):2174.
15 Fan S, Schubert E F. High extraction efficiency of spontaneous emission from slabs of photonic crystals[J].Physical Review Letters,1997,78(78):3294.
16 Wierer J J, David A, Megens M M. Ⅲ-nitride photonic-crystal light-emitting diodes with high extraction efficiency[J].Nature Photonics,2009,3(3):163.
17 Purcell E M. Spontaneous emission probabilities at radio frequencies[M].New York: Springer, 340.
18 Wendt J R, Vawter G A, Gourley P L, et al. Nanofabrication of photonic lattice structures in GaAs/AlGaAs[J].Journal of Vacuum Science & Technology B,1993,11(6):2637.
19 O′Brien D, Settle M D, Karle T, et al. Coupled photonic crystal he-terostructure nanocavities[J].Optics Express,2007,15(3):1228.
20 Bogaerts W, Wiaux V, Taillaert D, et al. Fabrication of photonic crystals in silicon-on-insulator using 248-nm deep UV lithography[J].IEEE Journal of Selected Topics in Quantum Electronics,2002,8(4):928.
21 Chelnokov A, David S, Wang K, et al. Fabrication of 2-D and 3-D silicon photonic crystals by deep etching[J].IEEE Journal of Selected Topics in Quantum Electronics,2002,8(4):919.
22 Kim S, Chong H, Dela Rue R M, et al. Electron-beam writing of photonic crystal patterns using a large beam-spot diameter[J].Nanotechnology,2003,14(9):1004.
23 Krauss T F, Dela Rue R M, Brand S. Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths[J].Nature,1996,383(6602):699.
24 Divliansky I B, Shishido A, Khoo I C, et al. Fabrication of two-dimensional photonic crystals using interference lithography and electrodeposition of CdSe[J].Applied Physics Letters,2002,81(10):1925.
25 Xia J S, Ikegami Y, Shiraki Y, et al. Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature[J].Applied Physics Letters,2006,89(20):3509.
26 Tsuboi T, Xu X, Xia J, et al. Room-temperature electroluminescence from ge quantum dots embedded in photonic crystal microcavities[J].Applied Physics Express,2012,5(5):052101.
27 Zhong Z, Halilovic A, Muhlberger M, et al. Positioning of self-assembled Ge islands on stripe-patterned Si (001) substrates[J].Journal of Applied Physics,2003,93(10):6258.
28 Stoica T, Shushunova V, Dais C, et al. Two-dimensional arrays of self-organized Ge islands obtained by chemical vapor deposition on pre-patterned silicon substrates[J].Nanotechnology,2007,18(45):455307.
29 Zeng C, Ma Y, Zhang Y, et al. Single germanium quantum dot embedded in photonic crystal nanocavity for light emitter on silicon chip[J].Optics Express,2015,23(17):22250.
30 Schatzl M, Hackl F, Glaser M, et al. Enhanced telecom emission from single group-Ⅳ quantum dots by precise CMOS-compatible positioning in photonic crystal cavities[J].ACS Photonics,2017,4(3):665
31 Deng J, Wang M, Yang Z, et al. Preparation of TiO2 nanoparticles two-dimensional photonic-crystals: A novel scattering layer of quantum dot-sensitized solar cells[J].Materials Letters,2016,183:307.
32 Akahane Y, Asano T, Song B S, et al. High-Q photonic nanocavity in a two-dimensional photonic crystal[J].Nature,2003,425(6961):944.
33 Takahashi Y, Hagino H, Tanaka Y, et al. High-Q nanocavity with a 2-ns photon lifetime[J].Optics Express,2007,15(25):17206.
34 Taguchi Y, Takahashi Y, Sato Y, et al. Statistical studies of photonic heterostructure nanocavities with an average Q factor of three million[J].Optics Express,2011,19(12):11916.
35 Chihara M, Terawaki R, Noda S, et al. Ultrahigh-Q photonic crystal nanocavities in wide optical telecommunication bands[J].Optics Express,2012,20(20):22743.
36 Sekoguchi H, Noda S, Asano T, et al. Photonic crystal nanocavity with a Q-factor of~9 million[J].Optics Express,2014,22(1):916.
37 Zhang Y, Zeng C, Li D, et al. Enhanced 1524-nm emission from ge quantum dots in a modified photonic crystal L3 cavity[J].IEEE Photonics Journal,2013,5(5):4500607.
38 Shakoor A, Savio R L, Portalupi S L, et al. Enhancement of room temperature sub-bandgap light emission from silicon photonic crystal nanocavity by Purcell effect[J].Physica B Physics of Condensed Matter,2012,407(20):4027.
39 Toishi M, Englund D, Faraon A, et al. High-brightness single photon source from a quantum dot in a directional-emission nanocavity[J].Optics Express,2009,17(17):14618.
40 Lo Savio R, Portalupi S L, Gerace D, et al. Room-temperature emission at telecom wavelengths from silicon photonic crystal nanocavities[J].Applied Physics Letters,2011,98(20):334.
41 Fujita M, Tanaka Y, Noda S. Light emission from silicon in photo-nic crystal nanocavity[J].IEEE Journal of Selected Topics in Quantum Electronics,2008,14(4):1090.
42 Mahdavi A, Sarau G, Xavier J, et al. Maximizing photoluminescence extraction in silicon photonic crystal slabs[J].Scientific Reports,2016,6:25135.
43 Wang Y, An J M, Wu Y D, et al. Enhancement of luminescence from Er-doped Si by photonic crystal gradient double-heterostructuremicrocavity[J].Optics & Laser Technology,2017,89:69.
44 Lo S R, Miritello M, Shakoor A, et al. Enhanced 1.54 μm emission in Y-Er disilicate thin films on silicon photonic crystal cavities[J].Optics Express,2013,21(8):10278.
45 Trupke T, Zhao J, Wang A, et al. Very efficient light emission from bulk crystalline silicon[J].Applied Physics Letters,2003,82(18):2996.
46 Mccaulley J A, Donnelly V M, Vernon M, et al. Temperature dependence of the near-infrared refractive index of silicon, gallium arsenide, and indium phosphide[J].Physical Review B Condensed Matter,1994,49(11):7408.
47 Waxler R M, Cleek G W. The Effect of temperature and pressure on the refractive index of some oxide glasses[J].Journal of Research of the National Bureau of Standards—A. Physics and Chemisty,1973,77A(6):755.
48 Miura R, Imamura S, Ohta R, et al. Ultralow mode-volume photo-nic crystal nanobeam cavities for high-efficiency coupling to indivi-dual carbon nanotube emitters[J].Nature Communications,2014,5:5580.
49 Zhu Z, Liu B, Cheng C, et al. Enhanced light extraction efficiency for glass scintillator coupled with two-dimensional photonic crystal structure[J].Optical Materials,2013,35(12):2343.
50 Liu X, Shimada T, Miura R, et al. Localized guided-mode and cavity-mode double resonance in photonic crystal nanocavities[J].Physical Review Applied,2015,3:014006-1.
[1] 王月敏, 商磊, 闫相桥, 李新刚, 李垚. 基于纳米压痕技术的光子晶体薄膜实验研究与有限元模拟[J]. 材料导报, 2019, 33(14): 2283-2286.
[2] 陈可, 马会茹. pH响应性光子晶体[J]. 《材料导报》期刊社, 2018, 32(7): 1094-1099.
[3] 孟佳意, 县泽宇, 李昕, 张德权. 光子晶体纤维的制备及应用*[J]. 《材料导报》期刊社, 2017, 31(5): 106-111.
[4] 徐 键,赵文娟,方 刚,徐清波. 反蛋白石结构光子晶体材料中光传输的仿真研究[J]. 《材料导报》期刊社, 2017, 31(24): 169-173.
[5] 张栋, 肖淼, 马迅, 程国胜, 张兆春. 一种在硅材料表面组装金纳米颗粒的新方法*[J]. 《材料导报》期刊社, 2017, 31(2): 25-28.
[6] 曾 琦, 李青松, 袁 伟, 周 宁, 张克勤. 非晶无序光子晶体结构色机理及其应用[J]. 材料导报, 2017, 31(1): 43-55.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed