Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (24): 169-173    https://doi.org/10.11896/j.issn.1005-023X.2017.024.033
  材料研究 |
反蛋白石结构光子晶体材料中光传输的仿真研究
徐 键,赵文娟,方 刚,徐清波
宁波大学信息科学与工程学院,宁波 315211
Simulation Study of Light Propagation in Inverse-opal Structured Photonic Crystal
XU Jian, ZHAO Wenjuan, FANG Gang, XU Qingbo
College of Information Science & Engineering, Ningbo University, Ningbo 315211
下载:  全 文 ( PDF ) ( 977KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 单分散胶体球可自组装出面心立方结构(周期常数为a)的三维光子晶体材料,进一步用高折射率光学材料填充其间隙再除去胶体球则可制得高折射率差、反蛋白石结构的三维光子晶体材料,从而应用于集成光子器件。了解其光子带隙以及光在缺陷中的传输性质是设计与制造该光子晶体材料与器件的基础,因此采用时域有限差分法仿真,研究不同波长λ的光在完整与含直线、L形线缺陷的反蛋白石结构光子晶体材料中的传输性质。研究结果表明该材料光子禁带的归一化频率a/λ在0.45~0.55之间,光在直线缺陷和L形线缺陷中传输的透过系数分别为~65%和~72%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐 键
赵文娟
方 刚
徐清波
关键词:  三维光子晶体  反蛋白石结构  时域有限差分  光传输性质  线缺陷    
Abstract: Mono-dispersed colloidal spheres could be self-assembled into face-centered cubic (FCC, lattice period constant is a) structured three-dimensional photonic crystal materials, furthermore, the photonic crystal of colloidal spheres could be used as a template for filling in with high refractive index optical material, then remove the colloidal spheres to obtain inversed-Opal structured photonic crystal material with high refractive index difference for integrated optical devices. In the present work, in order to know the light propagation in this kind of material, simulation study with the finite difference time domain method (FDTD) was carried out to understand different wavelength light-beam propagations in this kind of photonic crystal, as well as in straight-line and L-shape line defects. Simulation results indicated that the band-gap region located between a/λ= 0.45 to 0.55, and the transmission coefficients for light-beam in straight-line and L-shape line defects in this photonic crystal reached up to~65% and ~72%, respectively.
Key words:  three-dimensional photonic crystal    inverse-opal structure    finite difference time domain method    light propagation properties    line defects
出版日期:  2017-12-25      发布日期:  2018-05-08
ZTFLH:  TN15  
  TN25  
基金资助: 宁波市自然科学基金(2016F620067);宁波大学王宽诚幸福基金
作者简介:  徐键:男,1965年生,博士,教授,主要研究方向为光子材料与器件 E-mail:xujian@nbu.edu.cn
引用本文:    
徐 键,赵文娟,方 刚,徐清波. 反蛋白石结构光子晶体材料中光传输的仿真研究[J]. 《材料导报》期刊社, 2017, 31(24): 169-173.
XU Jian, ZHAO Wenjuan, FANG Gang, XU Qingbo. Simulation Study of Light Propagation in Inverse-opal Structured Photonic Crystal. Materials Reports, 2017, 31(24): 169-173.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.024.033  或          https://www.mater-rep.com/CN/Y2017/V31/I24/169
1 Song M, Wang X, Wang L, et al. Advances in the fabrication and application of photonic crystals[J]. Mater Rev:Rev,2016,30(7):22(in Chinese).
宋明丽,王小平,王丽军,等. 光子晶体制备及其应用研究进展[J]. 材料导报:综述篇,2016,30(7):22.
2 Sun J, Xing H. Effect of line defects on the band of two dimensional square photonic crystal[J]. J Infrared Millimeter Waves,2010,29(5):389(in Chinese).
孙家兆, 邢怀中. 线缺陷对二维四方圆柱形介质光子晶体禁带的影响[J]. 红外与毫米波学报,2010,29(5):389.
3 Wu Z, Li S, Zhang W, et al. Back reflector of solar cells consisting of one-dimensional photonic crystal and double-layered two-dimensional photonic crystal[J]. Acta Photon Sin, 2016,45(2):0223003-1(in Chinese).
武振华,李思敏,张文涛,等. 一维和双层二维光子晶体太阳能电池背反射器[J]. 光子学报,2016,45(2):0223003-1.
4 Feng J, Dong L, Wei L. Investigation on the spectrum of self-organized plasma photonic crystal[J]. J Synthetic Cryst,2016,45(2):328(in Chinese).
冯建宇,董丽芳,魏领燕. 自组织等离子体光子晶体的光谱研究[J]. 人工晶体学报,2016,45(2):328.
5 Chen Y, Fan H, Wang W, et al. Sensing model and performance of the surface defect photonic crystal with porous silicon[J]. Acta Optica Sin,2015,35(5):0523001(in Chinese).
陈颖,范卉青,王文跃,等. 多孔硅表面缺陷光子晶体的传感模型及特性[J]. 光学学报,2015,35(5):0523001.
6 Van Blaadere A. Materials science—Opals in a new light[J]. Science,1998,282:887.
7 Fleming J G, Lin S Y, El-Kady I, et al. All-metallic three-dimensional photonic crystals with a large infrared bandgap[J]. Nature,2002,417:52.
8 Zhang M. Wood pile structure of three-dimensional photonic crystal band gap characteristics[J]. Chinese J Spectro Lab, 2013,30(3):1222(in Chinese).
张明. 木堆结构三维光子晶体带隙特性[J]. 光谱实验室,2013,30(3):1222.
9 Kawashima S, Ishizaki K, Noda S. Light propagation in three-dimensional photonic crystals[J]. Opt Express,2010,18(1):386.
10Li Y, Xie K, Xu J, et al. Fabrication of silicon inverse opal photonic crystal with a complete photonic band gap in mid infrared range and its optical properties[J]. Acta Phys Sin, 2010,59(2):1082(in Chinese).
李宇杰,谢凯,许静,等. 中红外完全带隙Si反蛋白石光子晶体的制备与光学性能研究[J]. 物理学报,2010,59(2):1082.
11Wu J, Wang M. Three-dimensional colloidal crystal structures and analysis of propagation characteristics[J]. Optoelectron Technol, 2011,31(1):32(in Chinese).
吴婧,王鸣. 三维胶体晶体结构和传输特性分析[J]. 光电子技术,2011,31(1):32.
12Liu G, Liao Y, Chen Y, et al. Experiment fabrication and theory analysis of three-dimension high quality photonic crystals[J]. Acta Photon Sin, 2009,38(7):1707(in Chinese).
刘桂强,廖昱博,陈艳,等. 高质量三维光子晶体的实验制备及理论分析[J]. 光子学报,2009,38(7):1707.
13葛德彪, 闫玉波. 电磁波时域有限差分方法[M]. 第2版. 西安:西安电子科技大学出社,2002.
14Chen M, Huang L, Yu R. Four-order finite-difference time-domain method based on Liao’s absorbing boundary condition[J]. Acta Photon Sin, 2000,29(9):814(in Chinese).
陈明阳, 黄丽芳, 于荣金. 基于Liao氏吸收边界条件的四阶FDTD算法[J]. 光子学报,2000,29(9):814.
[1] 叶帆, 马壮, 高丽红, 李文智, 马琛. 成分与致密度对陶瓷材料近红外反射率影响的数值模拟[J]. 材料导报, 2020, 34(6): 6049-6056.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed