Please wait a minute...
材料导报  2017, Vol. 31 Issue (1): 43-55    https://doi.org/10.11896/j.issn.1005-023X.2017.01.006
  材料综述 |
非晶无序光子晶体结构色机理及其应用
曾 琦,李青松,袁 伟,周 宁,张克勤
苏州大学纺织与服装工程学院,现代丝绸国家工程实验室, 苏州 215123
The Mechanism and Its Application of Amorphous Photonic Crystals with Structural Color
ZENG Qi, LI Qingsong, YUAN Wei, ZHOU Ning, ZHANG Keqin
National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123
下载:  全 文 ( PDF ) ( 2170KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 结构色是一种由光学尺度的微纳结构与光相互作用形成干涉、衍射或散射而产生颜色的物理生色效应。与化学生色不同,结构色由于没有色素或者染料的参与,因此没有颜色褪色的现象,同时能够避免使用染料和色素带来的环境污染。目前结构色材料受到研究者和应用开发人员的广泛关注,大量的研究发现结构色可以来源于光子晶体与非晶光子晶体两种结构。光子晶体由规整的周期性结构组成,产生的颜色鲜艳却具有明显的角度依赖性。而非晶光子晶体,其“自身缺陷”导致的短程有序结构具备了各向同性的光子带隙、非虹彩效应、光局域化等特点,赋予了材料柔和亮丽不随角度变化的显色效果,可控的激光效应以及优良的发光效率,从而更能满足材料领域对光散射和光传输等方面的特殊需求。对非晶光子晶体的概念和结构,与可见光作用产生颜色的原理,以及制备非晶光子晶体的不同方法(平板刻蚀法、胶体颗粒自组装法、模板法、相分离法)做了详细的讨论,并对非晶光子晶体产生的结构色效应在光电器件、功能涂料和纺织材料等多个领域中的应用进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曾 琦
李青松
袁 伟
周 宁
张克勤
关键词:  结构色  非晶光子晶体  光子带隙  各向同性  非虹彩效应    
Abstract: Structural color is a physical effect of producing color, which arises from interference, diffraction, or scattering of light by micro- or nanostructures with the scale of light wavelength. Distinct from chemical color originated from pigment, structural color is promising to improve the fade phenomenon and to avoid the environmental contamination caused by the dyeing process owing to the absence of pigment or dye. Structural color materials have attracted great attention in both scientific research and industry. Generally, structural color can be generated by using photonic crystals or amorphous photonic crystals. Photonic crystal consists of periodic ordered structure which is effective to produce vivid color but the color is angle-dependent. However, amorphous photonic crystals that possess only short-range order structure owing to their own ‘defects’ show interesting optical responses, such as isotropic photonic bandgaps or pseudogaps, non-iridescent structural colors, and light localization. These unique properties endow amorphous photonic crystals the coloration effect of mild bright and angle-independent, the controllable lasing and excellent light extraction efficiency, which meets the need in the field of unique light scattering and transport. This review summarizes the conception and structure of amorphous photonic crystal, the principle of producing structural color, as well as artificial fabrication of structural color materials with a variety of the methods, including plate etching method, self-assembly of colloid particles, template method and phase separation. Finally, the potential applications of amorphous photonic crystals in photoelectric devices, painting, textile or other expected fields are discussed.
Key words:  structural color    amorphous photonic crystals    photonic bandgaps    isotropic    non-iridescent
               出版日期:  2017-01-10      发布日期:  2018-05-02
ZTFLH:  TB332  
基金资助: 国家自然科学基金(51073113;91027039;51373110;11404064);江苏省高校自然科学研究基金(10KJA540046)
作者简介:  曾琦:男,1992年生,硕士研究生,主要从事结构色纤维材料的研究 张克勤:通讯作者,男,教授,主要从事功能性纤维材料和生物医用材料的研究 E-mail:kqzhang@suda.edu.cn
引用本文:    
曾 琦, 李青松, 袁 伟, 周 宁, 张克勤. 非晶无序光子晶体结构色机理及其应用[J]. 材料导报, 2017, 31(1): 43-55.
ZENG Qi, LI Qingsong, YUAN Wei, ZHOU Ning, ZHANG Keqin. The Mechanism and Its Application of Amorphous Photonic Crystals with Structural Color. Materials Reports, 2017, 31(1): 43-55.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.01.006  或          http://www.mater-rep.com/CN/Y2017/V31/I1/43
1 Yablonovitch E. Inhibited spontaneous emission in solid-state phy-sics and electronics[J]. Phys Rev Lett,1987,58(20):2059.
2 Kinoshita S, Yoshioka S. Structural colors in nature: The role of regularity and irregularity in the structure[J].ChemPhysChem,2005,6(8):1442.
3 Zi J, et al. Coloration strategies in peacock feathers [J]. PNAS,2003,100(22):12576.
4 Galusha J W, Richey L R, Gardner J S, et al. Discovery of a diamond-based photonic crystal structure in beetle scales [J]. Phys Rev E,2008,77(5):050904.
5 Saranathan V, Osuji C O, Noh H, et al. photonic crystals in butterfly wing scales [J]. PNAS,2010,107(26):11676.
6 Ge D T, Yang L L, Wu G X, et al. Angle-independent colours from spray coated quasi-amorphous arrays of nanoparticles: Combination of constructive interference and Rayleigh scattering [J]. J Mater Chem C,2014,2(22):4395.
7 Takeoka Y. Angle-independent structural coloured amorphous arrays [J]. J Mater Chem C,2012,22(44):23299.
8 Forster J D, Noh H, Liew S F, et al. Biomimetic isotropic nanostructures for structural coloration [J]. Adv Mater,2010,22(26):2939.
9 Dufresne E R, Noh H, Saranathan V, et al. Self-assembly of amorphous biophotonic nanostructures by phase separation [J]. Soft Matter,2009,5(9):1792.
10 Prum R O, Dufresne E, Quinn T, et al. Development of colour-producing beta-keratin nanostructures in avian feather barbs [J]. J Royal Soc Interface,2009,6(2):253.
11 Prum R O, Torres R, Williamson S, et al. Coherent light scattering by blue feather barbs [J]. Nature,1998,396(6706):28.
12 Noh H, Liew S F, Saranathan V, et al. How non-iridescent colors are generated by quasi-ordered structures of bird feathers [J]. Adv Mater,2010,22(26):2871.
13 Yin H W, Dong B Q, Liu X H. Amorphous diamond-structured photonic crystal in the feather barbs of the scarlet macaw [J]. PNAS,2012,109(27):798.
14 Wiersma D S. Disordered photonics [J]. Nature Photon,2013,7(3):188.
15 Takeoka Y, Yoshioka S, Takano A, et al. Production of colored pigments with amorphous arrays of black and white colloidal particles [J]. Angew Chem Int Ed,2013,52(28):7261.
16 Diao Y Y, Liu X Y, Shi L, et al. Multiple structural coloring of silk-fibroin photonic crystals and humidity-responsive color sensing [J]. Adv Funct Mater,2013,23(43):5373.
17 Chen J X, Zu Q, Wu G, et al. Review of beetle forewing structures and their biomimetic applications in China: (Ⅰ) On the structural colors and the vertical and horizontal cross-sectional structures [J]. Mater Sci Eng C,2015,55:605.
18 Sheng C C, Cai Y Y, Dai E M, et al. Tunable structural color of anodic tantalum oxide films [J]. Chinese Phys B,2015,21(8):088101.
19 Saranathan V, Noh H, Liew S F, et al. Structure and optical function of amorphous photonic nanostructures from avian feather barbs: A comparative small angle X-ray scattering (SAXS) analysis of 230 bird species [J]. J Royal Soc Interface,2015,9(75):2563.
20 Fox D L. Animal biochromes and structural colours [M]. Berkeley, CA:University of California Press,1976.
21 Lee J H, Koh C Y, Singer J P, et al. 25th anniversary article: Ordered polymer structures for the engineering of photons and phonons [J]. Adv Mater,2014,26(4):532.
22 Ohtsuka Y, Seki T, Takeoka Y, et al. Thermally tunable hydrogels displaying angle-independent structural colors[J].Angew Chem Int Ed,2015,54(51):16.
23 Edagawa K, Kanoko S, Notomi M. Photonic amorphous diamond structure with a 3D photonic band gap [J]. Phys Rev Lett,2008,100(1):013901.
24 Takeoka Y, Honda M, Seki T, et al. Structural colored liquid membrane without angle dependence [J]. ACS Appl Mater Interfaces,2009,1(5):982.
25 Harun-Ur-Rashid M, Imran Dr A B, Seki T, et al. Angle-indepen-dent structural color in colloidal amorphous arrays [J]. ChemPhys-Chem,2010,11(3):579.
26 Takeoka Y, Yoshioka S, Teshima M, et al. Structurally coloured secondary particles composed of black and white colloidal particles [J]. Sci Rep,2013,3:2371.
27 Lim C H, Hyelim Kang, Kim S H. Colloid assembly in leidenfrost drops for noniridescent structural color pigments [J]. Langmuir,2014,30:8350.
28 Hirashima R, Seki T, Katagiri K, et al. Light-induced saturation change in the angle-independent structural coloration of colloidal amorphous arrays [J]. J Mater Chem C,2014,2:344.
29 Gotoh Y, Suzuki H, Kumano N, et al. An amorphous array of poly(N-isopropylacrylamide) brush-coated silica particles for thermally tunable angle-independent photonic band gap materials [J]. New J Chem,2012,36(11):2171.
30 Takeoka Y. Stimuli-responsive opals: Colloidal crystals and colloidal amorphous arrays for use in functional structurally colored materials [J]. J Mater Chem C,2013,1:6059.
31 Ge D T, Yang L L, Wu G X, et al. Spray coating of superhydrophobic and angle-independent coloured films [J]. Chem Commun,2014,50(19):2469.
32 Park J G, Kim S H, Magkiriadou S, et al. Spectrum photonic pigments with non-iridescent structural colors through colloidal assembly [J]. Angew Chem Int Ed,2014,53(11):2899.
33 Rotstein R, Mitragotri S, Moskovits M, et al. Progressive transition from resonant to diffuse reflection in anisotropic colloidal films [J]. J Polym Sci Part B,2014,52(9):611.
34 Shi L, Zhang Y, Dong B Q, et al. Amorphous photonic crystals with only short-range order [J]. Adv Mater,2013,25:5314.
35 Franklin D, Chen Y, Abraham Vazquez-Guardado, et al. Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces [J]. Nat Commun,2015,6:7337.
36 Xu T, Erich C Walter, Agrawal A, et al. High-contrast and fast electrochromic switching enabled by plasmonics [J]. Nat Commun,2016,7:10479.
37 Zhang J, He S S, Liu L M, et al. The continuous fabrication of mechanochromic fibers [J]. J Mater Chem C,2016,4:2127.
38 Wang F, Zhang X, Lin Y, et al. Structural coloration pigments based on carbon modified ZnS@SiO2 nanospheres with low-angle dependence, high color saturation, and enhanced stability [J]. ACS Appl Mater Interfaces,2016,8(7):5009.
39 Aleksandr V Yakovlev, Valentin A Milichko, Vladimir V Vinogradov, et al. Inkjet color printing by interference nanostructures [J]. ACS Nano,2016,10(3):3078.
40 Lai C F, Wang Y C, Hsiang-Chih Hsu. High transparency in the structural color resin films through quasi-amorphous arrays of colloidal silica nanospheres [J]. J Mater Chem C,2016,4:398.
41 Wang W T, Tang B T, Ju B Z, et al. Size-controlled synthesis of water-dispersible superparamagnetic Fe3O4 nanoclusters and their magnetic responsiveness[J]. RSC Adv,2015,5:75292.
42 Ge J P, Hu Y X, Yin Y D. Highly tunable superparamagnetic colloidal photonic crystals [J]. Angew Chem Int Ed,2007,46:7428.
43 Ge J P, Yin Y D. Magnetically tunable colloidal photonic structures in alkanol solutions [J]. Adv Mater,2008,20:3485.
44 Chung K, Yu S, Heo C, et al. Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings [J]. Adv Mater,2012,24(18):2375.
45 Ge D T, Lee E, Yang L L, et al. A robust smart window: Rever-sibly switching from high transparency to angle-independent structural color display [J]. Adv Mater,2015,27:2489.
46 Hsu C W, Miller O D, Johnson S G, et al. Optimization of sharp and viewing-angle-independent structural color [J]. Optics Express,2015,23(7):9516.
47 Kohri M, Nannichi Y, Taniguchi T. Biomimetic non-iridescent structural color materials from polydopamine black particles that mimic melanin granules [J]. J Mater Chem C,2015,3:720.
48 Gomes D C, Takahashi J A. Sequential fungal fermentation-biotransformation process to produce a red pigment from sclerotiorin [J]. Food Chem,2016,210(1):355.
49 Teshima M, Seki T, Kawano R. Preparation of structurally colored, monodisperse spherical assemblies composed of black and white colloidal particles using a micro-flow-focusing device [J]. J Mater Chem C,2015,3:769.
50 Yeo S J, Tu F Q, Kim S H, et al. Angle- and strain-independent coloured freestanding films incorporating non-spherical colloidal photonic crystals [J]. Soft Matter,2015,11:1582.
51 Yoshioka S, Takeoka Y. Production of colourful pigments consisting of amorphous arrays of silica particles [J]. ChemPhysChem,2014,15:2209.
52 Zhang J T, Cai Z Y, Kwak D H, et al. Two-dimensional photonic crystal sensors for visual detection of lectin concanavalin A [J]. Anal Chem,2014,86(18):9036.
53 Liew S F, Yang J K, Noh H, et al. Photonic band gaps in three-dimensional network structures with short-range order [J]. Phys Rev A,2011,84(6):6543.
54 Joannopoulos J, Meade R D, Winn J. Photonic crystals [M]. Priceton, NJ: Princeton University,1995.
55 Jin C J, Meng X D, Cheng B Y, et al. Photonic gap in amorphous photonic materials [J]. Phys Rev B,2001,63(19):1924.
56 Cheng S M, Li L M, Chan C T, et al. Defect and transmission pro-perties of two-dimensional quasiperiodic photonic band-gap systems [J]. Phys Rev B,1999,59:4091.
57 Jin C J, Cheng B Y, Man B Y, et al. Band gap and wave guiding effect in a quasiperiodic photonic crystal [J]. Appl Phys Lett,1999,75:1848.
58 Chan C T, Yu Q L, Ho K M, Order-N spectral method for electromagnetic waves [J]. Phys Rev B,1995,51(23):16635.
59 Jin C J, Cheng B Y, Man B Y, et al. Two-dimensional dodecagonal and decagonal quasiperiodic photonic crystals in the microwave region [J]. Phys Rev B,2000,61(10):762.
60 Rajagukguk J, Kaewkhao J, Djamal M, et al. Structural and optical characteristics of Eu3+ ions in sodium-lead zinc-lithium-borate glass system [J]. J Mol Struct,2016,1121(5):180.
61 Parker A R. 515 million years of structural colour [J]. J Opt A:Pure Appl Opt,2000,2(6):15.
62 Prum R O, Torres R H. Structural colouration of mammalian skin:Convergent evolution of coherently scattering dermal collagen arrays [J].J Experimental Biology,2004,207(12):2157.
63 Dong B Q, Liu X H, Zhan T R, et al. Structural coloration and photonic pseudogap in natural random close-packing photonic structures [J]. Optical Express,2010,18:14430.
64 Prum R O, Torres R H. Coherent light scattering by nanostructured collagen arrays in the caruncles of the malagasy asities (eurylaimi-dae: aves) [J].J Experimental Biology,1999,202(24):3507.
65 Zhang W, Zhang G. A humidity sensitive two-dimensional tunable amorphous photonic structure in the outer layer of bivalve ligament from Sunset Siliqua [J]. Mater Sci Eng C,2015,52:18.
66 Prum R O, Cole J A, Torres R H. Blue integumentary structural colours in dragonflies (Odonata) are not produced by incoherent Tyndall scattering [J]. J Experimental Biology,2004,207(22):3999.
67 Brush A H. Asymptotic behavior of some evolution systems, in nonlinear evolution equations [M].New York:Academic Press,1978
68 Barkema G T, Mousseau N. High-quality continuous random networks [J]. Phys Rev B,2000,62:4985.
69 Heeso N, Yang J K, Liew S F, et al. Control of lasing in biomimetic structures with short-range order [J]. Phys Rev Lett,2011,106(18):183901.
70 Yue Q Y, Li K, et al. Analysis on the light-extraction efficiency of gan-based light-emitting diodes with deep-holeamorphous photonic crystals structures [J].J Display Technol,2014,10(12):1070.
71 Molmer K, Castin Y, Dalibard. Monte Carlo wave-function method in quantum optics [J]. J Opt Soc Am B,1993,10(23):524.
72 John S. Strong localization of photons in certain disordered dielectric superlattices [J]. Phys Rev Lett,1987,58:2486.
73 Ueno K, Sano Y, Inaba A, et al. Soft glassy colloidal arrays in an ionic liquid: Colloidal glass transition, ionic transport, and structural color in relation to microstructure [J]. J Phys Chem B,2010,114(41):13095.
74 Noh H, Liew S F, Saranathan V, et al. Double scattering of light from biophotonic nanostructures with short-range order [J]. Opt Express,2010,18:11942.
75 Takeoka Y. Fusion materials for biomimetic structurally colored materials [J]. Polym J,2014,47(2):106.
76 Harun M, Ur Rashid M, Seki T,et al Structural colored gels for tunable soft photonic crystals [J]. Chem Record,2009,9(2):87.
77 Du X, Li T, Li L,et al. Water as a colorful ink: Transparent, rewritable photonic coatings based on colloidal crystals embedded in chitosan hydrogel [J]. J Mater Chem C,2015,3:3542.
78 Srinivasarao M. Nano-optics in the biological world: Beetles, butterflies, birds, and moths [J]. Chem Rev,1999,99(7):1935.
79 Ye B F, Rong F, Gu H C, et al. Bioinspired angle-independent photonic crystal colorimetric sensing [J]. Chem Commun,2013,49(46):5331.
80 Dale J, Hill G, McGraw K. Intraspecific variation in coloration [M]. Bird Coloration: Harvard University Press,2006:36.
81 Erlandson A C, Aceves S M, Bayramian A, et al. Comparison of Nd: phosphate glass, Yb: YAG and Yb: S-FAP laser beamlines for laser inertial fusion energy (LIFE) [J]. Opt Mater Express,2011,1(7):1341.
82 Lee I, Kim D, Kal J, et al. Quasi-amorphous colloidal structures for electrically tunable full-color photonic pixels with angle-independency [J]. Adv Mater,2010,22(44):4973.
83 Wang Fen, Zhang Xin, Zhang L, et al. Rapid fabrication of angle-independent structurally colored films with a superhydrophobic pro-perty [J]. Dyes Pigments,2016,130(3):202.
84 Hayward R C, Saville A, Aksay A.Electrophoretic assembly of colloidal crystals with optically tunable micropatterns [J]. Nature,2000,404:56.
85 Braun P,Wiltzius P.Macroporous materials-electrochemically grown photonic crystals [J]. Colloid Interface Sci,2002,7(1):116.
86 Magkiriadou S, Park J G, Kim Y S, et al. Absence of red structural color in photonic glasses, bird feathers, and certain beetles [J]. Phys Rev E,2014,90:062302.
87 Ho C M, Yu J C, Wang X C, et al. Meso- and macro-porous Pd/CexZr1-xO2 as novel oxidation catalysts [J].J Mater Chem,2005,15(22):2193.
88 Chen J, Qin G, Shen W, et al. Fabrication of long-range ordered, broccoli-like SERS arrays and application in detecting endocrine disrupting chemicals [J]. J Mater Chem C,2015,3(6):1309.
89 Chung Y W, Leu I C, Lee J H, et al. Influence of humidity on the fabrication of high-quality colloidal crystals via a capillary-enhanced process [J]. Langmuir,2006,22(14):6454.
90 Biener J, Nyce G W, Hodge A M, et al.Nanoporous plasmonic metamaterials [J]. Adv Mater,2008,20(6):1211.
91 Stein A, Schroden R C. Colloidal crystal templating of three-dimensionally ordered macroporous solids: Materials for photonics and beyond [J]. Solid State Mater Sci,2001,5(6):553.
92 Emrick T, Frechet J M. Self-assembly of dendritic structures [J]. Colloid Interface Sci,1999,4(1):15.
93 Blanco A, Chomski E, Grabtchak S, et al. Large-scale synthesis of a silicon photonic crystal with a complete three- dimensional bandgap near 1.5 micrometres [J]. Nature,2000,405:437.
94 Wijnhoven J, Vos W L. Preparation of photonic crystals made of air spheres in titania [J]. Science,1998,281:802.
95 Zhang Y F, Dong B Q, Liu X H, et al. Replication of spinodally decomposed structures with structural coloration from scales of the longhorn beetle Sphingnotus mirabilis [J]. Bioinspiration Biomime-tics,2013,8(4):045003.
96 Shi L, Yin H W, Zhang R Y, et al. Macroporous oxide structures with short-range order and bright structural coloration: A replication from parrot feather barbs [J]. J Mater Chem,2010,20(1):90.
97 Dong Biqin. Researching on photonic structure in nature and its biomimetic preparation and application [D]. Shanghai:Fudan University,2011(in Chinese).
董必勤.自然光子结构研究及其仿生人工制备与应用[D].上海:复旦大学,2011.
98 Prum R O. Bird coloration, volume 1: Mechanisms and measurements [M]. Cambridge, MA:Harvard University Press,2006:295.
99 Dong B Q, Zhan T R, Liu X H, et al. Optical response of a disordered bicontinuous macroporous structure in the longhorn beetle Sphingnotus mirabilis [J]. Phys Rev E,2011,84:011915.
100 Shawkey M D, Estes A M, Siefferman L M, et al.Nanostructure predicts intraspecific variation in ultraviolet-blue plumage colour [J]. Proceedings Royal Soc B,2003,270(1523):1455.
101 Vukusic P, Sambles J R. Physics of structural colors [J]. Nature,2003,424(6950):852.
102 Kinoshita S, Yoshioka S, Miyazaki J. Physics of structural colors [J]. Reports Prog Phys,2008,71(30):76401.
103 Nakanishi K, Soga N. Phase separation in silica sol-gel system containing polyacrylic acid I. Gel formaation behavior and effect of solvent composition [J].J Non-Cryst Solids,1992,139(5):1.
104 Nakanishi K. Pore strueture control of silica gels based on phase separation [J]. J Porous Mater,1997,4(2):67.
105 Scharrer M, Wu X, Yanillov A, et al. Fabrieation of inverted opal ZnO photonic crystals by atomic layer deposition [J]. Appl Phys Lett,2005,86(15):151113.
106 Lefebvre L P, Banhart J, Dunand D C. Porous metals and metallic foams: Current status and recent developments [J]. Adv Eng Mater,2008,10(9):775.
107 Husing N, Schubert U S. Aerogels-airy materials: Chemistry, structure and properties [J]. Angew Chem Int Ed,1998,37(1):22.
108 Parker A R, Townley H E. Biomimetics of photonic nanostructures [J]. Nat Nanotechnol,2007,2(6):347.
109 Kim H, Ge J, Kim J, et al. Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal [J]. Nat Photon,2009,3(9):534.
110 Diao Y Y, Liu X Y.Eco-dyeing, finishing and green chemistry[J].Adv Mater Res,2012,441(183):800.
111 Zhang Y F, Dong B Q, Chen A, et al. Using cuttlefish ink as an additive to produce-non-iridescent structural colors of high color visibility [J]. Adv Mater,2015,27(32):4719.
112 Turitsyn S K, Babin S A, El-Taher A E, et al. Random distributed feedback fibre laser [J]. Nat Photon,2010,4(4):231.
113 Zhou J, Yang J, Gu Z D, et al. Controllable fabrication of noniridescent microshaped photonic crystal assemblies by dynamic three-phase contact line behaviors on superhydrophobic substrates[J]. ACS Appl Mater Interfaces,2015,7(40):22644.
114 Fallert J, Dietz R J, Sartor J, et al. Co-existence of strongly and weakly localized random laser modes [J]. Nat Photon,2009,3(5):279.
115 Vukusic P, Hallam B, Noyes J. Brilliant whiteness in ultrathin beetle scales [J]. Science,2007,315(5810):348.
[1] 陈可, 马会茹. pH响应性光子晶体[J]. 《材料导报》期刊社, 2018, 32(7): 1094-1099.
[2] 何霄,邹宇新,邱佳佳,杨玺,李绍元,马文会. 交替刻蚀制备有序锯齿形硅纳米线阵列及其光学性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 167-170.
[3] 王丹彤,周涵,范同祥. 生物宽带反射结构色效应研究综述[J]. 材料导报, 2018, 32(19): 3465-3472.
[4] 孟佳意, 县泽宇, 李昕, 张德权. 光子晶体纤维的制备及应用*[J]. 《材料导报》期刊社, 2017, 31(5): 106-111.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed