Please wait a minute...
材料导报  2024, Vol. 38 Issue (21): 23070230-13    https://doi.org/10.11896/cldb.23070230
  无机非金属及其复合材料 |
具有光子晶体结构的电致变色器件的研究进展
俞朱敏, 李琳, 赵凯*, 吴梦悦, 叶常青*
苏州科技大学材料科学与工程学院,绿色印刷纳米光子工程技术研究中心,江苏 苏州 215009
Research Progress of Electrochromic Devices with Photonic Crystal Structures
YU Zhumin, LI Lin, ZHAO Kai*, WU Mengyue, YE Changqing*
Research Center for Green Printing Nanophotonic Materials, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
下载:  全 文 ( PDF ) ( 19273KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 光子晶体(Photonic crystals,PCs)是一种周期性排列有序的微结构材料,由于具有独特的周期结构、灵活的光调控能力等特点被广泛应用于电致变色(Electrochromicsm, EC)领域。具有光子晶体结构的电致变色器件可利用其产生的结构色与电致变色的化学色相结合,进而丰富和拓展器件的色域,为电致变色的色彩调控提供新的策略。此外,多维光子晶体结构可以为电致变色器件(Electrochromic devices, ECDs)提供有序离子传输通道和多离子活性反应位点,促进离子的注入/脱出,从而提升器件的电致变色性能。本文扼要介绍了评价电致变色材料与器件性能的参数,着重归纳了不同维度光子晶体在电致变色领域的应用策略,并详细总结了具有光子晶体结构的电致变色器件在智能窗、显示、伪装等领域的潜在应用。最后,针对目前光子晶体结构在电致变色领域中仍存在的问题,对其未来的发展趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
俞朱敏
李琳
赵凯
吴梦悦
叶常青
关键词:  光子晶体  电致变色  周期性结构  结构色  色域拓展    
Abstract: Photonic crystals (PCs)are artificially ordered microstructure materials. In recent years, photonic crystals have been gradually used in the electrochromism (EC) field because of unique characteristics, such as continuous periodic structures, and the ability of light regulation. Electrochromism devices (ECDs) with photonic crystal structures can enrich the color gamut by combining photonic band gaps with electrochromism, which provides a novel way to adjust electrochromism color. In addition, multidimensional photonic crystals can provide ordered ion transport channels and rich ion-active reaction sites for electrochromic devices, thus promoting ion insertion/extraction and improving electrochromism performance. Herein, this paper firstly clarfies the performance parameters to evaluate electrochromism materials and devices and the manufacturing strategies of different dimensional photonic crystals in the electrochromism field. It summarized in detail the applications of electrochromism materials and devices with photonic crystal structures including smart windows, displays, and camouflage. It ends with a discussion on the limitations and prospects of photonic crystals in the field of electrochromism, and regarding problems existing in their development.
Key words:  photonic crystal    electrochromism    periodic structure    structural color    gamut extension
出版日期:  2024-11-10      发布日期:  2024-11-11
ZTFLH:  TB332  
基金资助: 国家自然科学基金 (51873145);江苏省自然科学基金优秀青年基金项目(BK20170065);江苏省自然科学基金青年项目(BK20230655);江苏省六大人才高峰项目(XCL-79);江苏省第五期333工程项目(BRA2018340);江苏省青蓝工程
通讯作者:  *赵凯,苏州科技大学材料科学与工程学院讲师。2015年太原理工大学本科毕业,2022年大连理工大学博士毕业后到苏州科技大学工作至今。目前主要从事仿生结构色/光子晶体材料、光/电智能可穿戴器件的构筑等研究工作。在Chem. Eng. J.、Ind. Eng. Chem. Res.、Adv. Mater. Technol.等发表论文10余篇。zhaokai@usts.edu.cn;
叶常青,苏州科技大学材料科学与工程学院教授、硕士研究生导师。2007年南京大学本科毕业,2012年中国科学院化学所博士毕业后到苏州科技大学工作至今。目前主要从事光子晶体材料、上转换发光材料和柔性印刷光电器件应用等研究工作。发表论文100余篇,包括J. Am. Chem. Soc.、Angew. Chem. Int. Edit.、Energy Environ. Sci.等。yechangqing@mail.usts.edu.cn   
作者简介:  俞朱敏,2021年6月于苏州科技大学获得工学学士学位。现为苏州科技大学材料科学与工程学院硕士研究生,在叶常青教授的指导下进行研究。目前主要研究领域为光子晶体结构电致变色材料与器件的制备及电致变色性能。
引用本文:    
俞朱敏, 李琳, 赵凯, 吴梦悦, 叶常青. 具有光子晶体结构的电致变色器件的研究进展[J]. 材料导报, 2024, 38(21): 23070230-13.
YU Zhumin, LI Lin, ZHAO Kai, WU Mengyue, YE Changqing. Research Progress of Electrochromic Devices with Photonic Crystal Structures. Materials Reports, 2024, 38(21): 23070230-13.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23070230  或          http://www.mater-rep.com/CN/Y2024/V38/I21/23070230
1 Cai G, Wang J, Lee P S. Accounts of Chemical Research, 2016, 49 (8), 1469.
2 Chou H H, Nguyen A, Chortos A, et al. Nature Communications, 2015, 6 (1), 8011.
3 Lahav M, Van Der Boom M E. Advanced Materials, 2018, 30 (41), 1706641.
4 Matsuhisa N, Niu S, O’neill S J K, et al. Nature, 2021, 600 (7888), 246.
5 Niu J, Wang Y, Zou X, et al. Applied Materials Today, 2021, 24, 101073.
6 Yang P, Sun P, Mai W. Materials Today, 2016, 19 (7), 394.
7 Gu C, Jia A B, Zhang Y M, et al. Chemical Reviews, 2022, 122 (18), 14679.
8 Hai Z, Karbalaei Akbari M, Wei Z, et al. ACS Applied Materials & Interfaces, 2019, 11 (31), 27997.
9 Rozman M, Gaberšček M, Marolt G, et al. Advanced Materials Technologies, 2019, 4 (9), 1900389.
10 Yang G, Zhang Y M, Cai Y, et al. Chemical Society Reviews, 2020, 49 (23), 8687.
11 Zeng J, Wan Z, Zhu M, et al. Materials Chemistry Frontiers, 2019, 3 (11), 2514.
12 Zhang W, Li H, Yu W W, et al. Light: Science & Applications, 2020, 9 (1), 121.
13 Kim Y, Han M, Kim J, et al. Energy & Environmental Science, 2018, 11 (8), 2124.
14 Rosseinsky D R, Mortimer R J. Advanced Materials, 2001, 13 (11), 783.
15 Yin L, Cao M, Kim K N, et al. Nature Electronics, 2022, 5 (10), 694.
16 Zhang S, Cao S, Zhang T, et al. Energy & Environmental Science, 2018, 11 (10), 2884.
17 Kim H N, Cho S M, Ah C S, et al. Materials Research Bulletin, 2016, 82, 16.
18 Xiong K, Emilsson G, Maziz A, et al. Advanced Materials, 2016, 28 (45), 9956.
19 Zhang W, Li H, Elezzabi A Y. Advanced Functional Materials, 2022, 32 (7), 2108341.
20 Chen J, Wang Z, Liu C, et al. Advanced Materials, 2021, 33 (14), 2007314.
21 Redel E, Mlynarski J, Moir J, et al. Advanced Materials, 2012, 24 (35), OP265.
22 Sonmez G, Sonmez H B, Shen C K F, et al. Advanced Materials, 2004, 16 (21), 1905.
23 Hopmann E, Zhang W, Li H, et al. Nanophotonics, 2023, 12 (4), 637.
24 Yablonovitch E. Physical Review Letters, 1987, 58 (20), 2059.
25 John S. Physical Review Letters, 1987, 58 (23), 2486.
26 Arismar Cerqueira S. Reports on Progress in Physics, 2010, 73 (2), 024401.
27 Liu S, Yang Y, Zhang L, et al. Journal of Materials Chemistry C, 2020, 8 (47), 16633.
28 Ma J, Wang Z G, Liu X J, et al. Physica E: Low-dimensional Systems and Nanostructures, 2017, 89, 61.
29 Wang W, Zhou Y, Yang L, et al. Advanced Functional Materials, 2022, 32 (40), 2204744.
30 Xu X, Zhang D. Chinese Science Bulletin, 2007, 52 (7), 865.
31 Sadykov A I, Kushnir S E, Sapoletova N A, et al. Scripta Materialia, 2020, 178, 13.
32 Zhang S, Zhao Y, Du Z, et al. Solar Energy Materials and Solar Cells, 2020, 207, 110354.
33 Zhang S, Ren J, Chen S, et al. Journal of Electroanalytical Chemistry, 2020, 870, 114248.
34 Zhang H, Duan G, Liu G, et al. Nanoscale, 2013, 5 (6), 2460.
35 Zhang D, Wang J, Tong Z, et al. Advanced Functional Materials, 2021, 31 (45), 2106577.
36 Yang H, Yu J H, Jeong R H, et al. Thin Solid Films, 2018, 660, 596.
37 Wu P, Guo J, Jiang K, et al. Advanced Functional Materials, 2019, 29 (38), 1808473.
38 Wu H, Chu C, Chen T, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 577, 75.
39 Goei R, Ong A J, Tan J H, et al. ACS Omega, 2021, 6 (40), 26251.
40 Ge D, Yang L, Tong Z, et al. Electrochimica Acta, 2013, 104, 191.
41 Chen K, He J, Zhang D, et al. Nano Letters, 2021, 21 (10), 4500.
42 Kuno T, Matsumura Y, Nakabayashi K, et al. Angewandte Chemie International Edition, 2016, 55 (7), 2503.
43 Liu L, Karuturi S K, Su L T, et al. Electrochemistry Communications, 2011, 13 (11), 1163.
44 Qu H Y, Wang J, Montero J, et al. Journal of Applied Physics, 2021, 129 (12), 123105.
45 Xiao L, Lv Y, Lin J, et al. Advanced Optical Materials, 2018, 6 (1), 1700791.
46 Feng K, Lu M, Wei G, et al. ACS Applied Nano Materials, 2022, 5 (8), 10848.
47 Goei R, Ong A J, Hao T J, et al. Ceramics International, 2021, 47 (13), 18433.
48 Hua C, Cheng Z, Ma Y, et al. Journal of The Electrochemical Society, 2021, 168 (4), 042503.
49 Ling H, Yeo L P, Wang Z, et al. Journal of Materials Chemistry C, 2018, 6 (31), 8488.
50 Zhan Y, Yang Z, Xu Z, et al. Chemical Engineering Journal, 2020, 394, 124967.
51 Wang M, Song H, Li X, et al. Advanced Optical Materials, 2023, 11 (7), 2202531.
52 Wang M, Zou C, Sun J, et al. Advanced Functional Materials, 2017, 27 (46), 1702261.
53 Zhang X, Yang Y, Xue P, et al. Angewandte Chemie International Edition, 2022, 61 (42), e202211030.
54 Wang Y, Guo J, Sun L, et al. Chemical Engineering Journal, 2021, 415, 128978.
55 Xu L, Wang J, Song Y, et al. Chemistry of Materials, 2008, 20 (11), 3554.
56 Fu Q, Yu W, Bao G, et al. Nature Communications, 2022, 13 (1), 7007.
57 Kim J, Park S G, Kim M, et al. Advanced Electronic Materials, 2023, 9 (8), 2300185.
58 Yu W, Zhao Y, Sheng W, et al. Advanced Functional Materials, 2023, 33, 2304474.
59 Arsenault A C, Puzzo D P, Manners I, et al. Nature Photonics, 2007, 1 (8), 468.
60 Kim D Y, Choi S, Cho H, et al. Advanced Materials, 2019, 31 (2), 1804080.
61 Li C, Zhou X, Wang K, et al. Composites Communications, 2019, 12, 47.
62 Heo S, Agrawal A, Milliron D J. Advanced Functional Materials, 2019, 29 (37), 1904555.
63 Zhang X, Dou S, Li W, et al. Electrochimica Acta, 2019, 297, 223.
64 Li H, Robichaud J, Djaoued Y. RSC Advances, 2021, 11 (14), 8065.
65 Li H, Vienneau G, Jones M, et al. Journal of Materials Chemistry C, 2014, 2 (37), 7804.
66 Li H, Djaoued H, Robichaud J, et al. Journal of Materials Chemistry C, 2020, 8 (33), 11572.
67 Li H, Li S, Robichaud J, et al. ChemistrySelect, 2019, 4 (11), 3266.
68 Li H, Wang J F, Vienneau G, et al. RSC Advances, 2017, 7 (73), 46406.
69 Cho S I, Kwon W J, Choi S J, et al. Advanced Materials, 2005, 17 (2), 171.
70 Zhang S, Ren J, Zhang Y, et al. Organic Electronics, 2020, 77, 105497.
71 Tong Z, Hao J, Zhang K, et al. Journal of Materials Chemistry C, 2014, 2 (18), 3651.
72 Hsieh C H, Lin F T, Lin K Y A, et al. ACS Applied Nano Materials, 2022, 5 (10), 15855.
73 Zhang S, Chen S, Yan B, et al. The Journal of Physical Chemistry C, 2020, 124 (20), 10898.
74 Nguyen T D, Yeo L P, Mandler D, et al. RSC Advances, 2019, 9 (29), 16730.
75 Nguyen T D, Yeo L P, Ong A J, et al. Materials Today Energy, 2020, 18, 100496.
76 Huang H, Li H, Shen X, et al. Chemical Engineering Journal, 2022, 429, 132437.
[1] 王海萍, 陈必华, 陶益杰, 黄凯兵, 张世国. 聚醚接枝丙烯酸树脂基凝胶聚合物电解质的制备及在电致变色器件中的应用[J]. 材料导报, 2024, 38(7): 22090034-5.
[2] 陈渊泽, 牛春晖, 王雷, 杨明庆, 张世玉, 吕勇. 聚苯胺红外电致变色器件研究进展[J]. 材料导报, 2024, 38(5): 22090259-10.
[3] 蔡轩皓, 娄兴, 覃继宁, 周涵. 电致变色材料微纳结构设计及多波段调控应用研究进展[J]. 材料导报, 2024, 38(21): 23100087-7.
[4] 王均委, 李琳, 齐家瑞, 郑勤红, 姚斌. 圆柱形光子晶体微波反应腔的加热效率和均匀性研究[J]. 材料导报, 2023, 37(4): 21060010-8.
[5] 孟真, 李广德, 崔光振, 王义, 刘东青, 程海峰. 基于超材料的红外/雷达兼容隐身材料研究进展[J]. 材料导报, 2023, 37(21): 22040001-8.
[6] 童瀚翔, 李红盛, 刘延领, 吴爱民, 黄昊. 红外隐身[Si/MgF2]N一维光子晶体设计与计算[J]. 材料导报, 2022, 36(Z1): 21060196-5.
[7] 周裕杰, 蔡高峰, 董建峰. 介质材料的有序微纳结构及其显色研究进展[J]. 材料导报, 2022, 36(20): 20100034-9.
[8] 李晓丹, 胡心雨, 刘小平, 刘小清, 申渝, 唐莹, 冯佳成. 苯并噁嗪树脂的研究新进展:智能化应用及能源、环境领域应用[J]. 材料导报, 2021, 35(3): 3209-3218.
[9] 赵亚丽, 贾琨, 赵岩, 马玉峰, 李旭峰. 金属光子晶体结构对其透光率强度和曲线宽度的影响[J]. 材料导报, 2021, 35(14): 14171-14175.
[10] 王月敏, 商磊, 闫相桥, 李新刚, 李垚. 基于纳米压痕技术的光子晶体薄膜实验研究与有限元模拟[J]. 材料导报, 2019, 33(14): 2283-2286.
[11] 陈可, 马会茹. pH响应性光子晶体[J]. 《材料导报》期刊社, 2018, 32(7): 1094-1099.
[12] 王丹彤,周涵,范同祥. 生物宽带反射结构色效应研究综述[J]. 材料导报, 2018, 32(19): 3465-3472.
[13] 陈冬阳, 欧阳凌曦, 冯晓旭, 荣康, 杨杰, 王茺, 杨宇. 二维光子晶体微腔的制备及其对硅光学材料的光量子放大[J]. 《材料导报》期刊社, 2018, 32(13): 2189-2194.
[14] 孟佳意, 县泽宇, 李昕, 张德权. 光子晶体纤维的制备及应用*[J]. 《材料导报》期刊社, 2017, 31(5): 106-111.
[15] 徐 键,赵文娟,方 刚,徐清波. 反蛋白石结构光子晶体材料中光传输的仿真研究[J]. 《材料导报》期刊社, 2017, 31(24): 169-173.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed