Please wait a minute...
材料导报  2022, Vol. 36 Issue (20): 20100034-9    https://doi.org/10.11896/cldb.20100034
  无机非金属及其复合材料 |
介质材料的有序微纳结构及其显色研究进展
周裕杰, 蔡高峰, 董建峰*
宁波大学信息科学与工程学院,浙江 宁波 315211
Research Progress on Color Development of Dielectric Materials with Ordered Micro-Nano Structure
ZHOU Yujie, CAI Gaofeng, DONG Jianfeng*
Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, Zhejiang, China
下载:  全 文 ( PDF ) ( 5014KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在自然界和日常生活中,由入射光与结构之间的干涉而产生的结构色是普遍存在的。与传统的化学颜料和染料相比,结构色具有损耗低、环保、耐久性高等优点,在显示、光存储、传感和信息加密等领域具有广阔的应用前景。近年来,随着微纳加工技术和表征手段的不断发展,利用人工制造的金属微纳结构来产生结构色成为一种主要的方法。但是表面等离激元结构色不可避免地会产生高的损耗,这使得散射截面变小,从而导致了色度范围受限、颜色饱和度降低、明度降低等一系列问题。与等离激元结构相比,谐振介质结构和混合结构具有损耗低、场约束强、散射截面大等优点。因此,介质结构色的研究对实现超高分辨率的鲜艳结构色具有重要意义。本文从介质结构色的理论基础出发,按照介质材料的种类(硅、二氧化钛、氮化硅、二氧化硅和其他材料),对其最近的研究进展进行了综述,提出了介质结构色这一快速发展领域未来可能的发展方向和存在的挑战。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周裕杰
蔡高峰
董建峰
关键词:  介质超表面  结构色  Mie理论  纳米结构    
Abstract: Structural colors resulting from the interference between incident light and structures are ubiquitous in nature and daily life. In contrast to conventional chemical pigments and dyes, structural colors have the advantages of low loss, environmental protection and high durability,and have broad application prospects in the fields of display, optical storage, sensing and information encryption. In recent years, with the continuous development of micro-nano processing technology and characterization methods, the use of artificially manufactured metallic nanostructures has become the main method to produce structural colors. However, inevitable high loss of resonant plasmonic structural colors will lead to reduced scattering cross-sections, so it causes a series of problems like limited hue range, reduced color saturation and low value. Compared with the plasmonic structure, resonant dielectric and hybrid structures are subjected to low loss while providing strong field confinement and large scattering cross sections. Therefore, the research of dielectric structural color is of great significance to achieve bright structural colors in ultra-high resolution. In this paper, we first introduce some theoretical foundations of dielectric structure colors, and then review the latest research progress according to the types of dielectric: silicon, silicon dioxide, titanium dioxide, silicon nitride and other materials. Finally, we put forward our own opi-nion on the possible future development direction and existing challenges of the rapid developing field of the dielectric structure colors.
Key words:  dielectric metasurfaces    structural colors    Mie theory    nanostructure
发布日期:  2022-10-26
ZTFLH:  TB34  
基金资助: 国家自然科学基金(61475079)
通讯作者:  *dongjianfeng@nbu.edu.cn   
作者简介:  周裕杰,2019年6月毕业于湖南工程学院,获得工学学士学位。现为宁波大学信息科学与工程学院硕士研究生,在董建峰教授的指导下进行研究。目前主要研究领域为全介质结构色。
董建峰,宁波大学信息科学与工程学院教授、博士研究生导师。1986年南开大学物理系光学专业本科毕业,1989年中国科学院物理研究所固体物理专业硕士毕业后到宁波大学工作至今,2005年中国科学技术大学电磁场与微波技术专业博士毕业。2006年12月至2007年12月在美国能源部Ames国家实验室访学一年。目前主要从事超材料、手征介质波导等方面的研究工作。发表论文100余篇,包括Optics Express、Physical Review B、Applied Physics Letters、Progress in Electromagnetics Research (PIER)等。
引用本文:    
周裕杰, 蔡高峰, 董建峰. 介质材料的有序微纳结构及其显色研究进展[J]. 材料导报, 2022, 36(20): 20100034-9.
ZHOU Yujie, CAI Gaofeng, DONG Jianfeng. Research Progress on Color Development of Dielectric Materials with Ordered Micro-Nano Structure. Materials Reports, 2022, 36(20): 20100034-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100034  或          http://www.mater-rep.com/CN/Y2022/V36/I20/20100034
1 Lee T, Jang J, Jeong H, et al. Nano Convergence, 2018, 5(1), 1.
2 Barnett J R, Miller S, Pearce E. Optics & Laser Technology, 2006, 38(4-6), 445.
3 Kristensen A, Yang J, Bozhevolnyi S I, et al. Nature Reviews Materials, 2016, 2, 16088.
4 Ghiradella H. Applied Optics, 1991, 30(24), 3492.
5 Kinoshita S, Yoshioka S, Miyazaki J. Reports on Progress in Physics, 2008, 71(7), 076401.
6 Fu Y, Tippets C A, Donev E U, et al. Wiley Interdisciplinary Reviews Nanomedicine and Nanobiotechnology, 2016, 8, 758.
7 Zhang K, Tang Y, Meng J, et al. Optics Express, 2014, 22(22), 27437.
8 Al-Salem S M, Lettieri P, Baeyens J. Waste Management, 2009, 29(10), 2625.
9 Kumar K, Duan H, Hegde R S, et al. Nature Nanotechnology, 2012, 7(9), 557.
10 Roberts A S, Pors A, Albrektsen O, et al. Nano Letters, 2014, 14(2), 783.
11 Tan S J, Zhang L, Zhu D, et al. Nano Letters, 2014, 14(7), 4023.
12 Lueder E. Liquid crystal displays: addressing schemes and electro-optical effects: 2nd edition, Wiley Publishing Press, USA, 2010.
13 Singh R R, Ho D, Nilchi A, et al. IEEE Transactions on Circuits and Systems I: Regular Papers, 2010, 57(5), 1029.
14 Yokogawa S, Burgos S P, Atwater H A. Nano Letters, 2012, 12(8), 4349.
15 Cho Y, Choi Y K, Sohn S H. Applied Physics Letters, 2006, 89(5), 913.
16 Yang Y, Miroshnichenko A E, Kostinski S V, et al.Physical Review B, 2017, 95(16), 165426.
17 Baek K, Kim Y, Mohd-Noor S, et al. ACS Applied Materials & Interfaces, 2020, 12(5), 5300.
18 Zhao Q, Zhou J, Zhang F, et al. Materials Today, 2009, 12(12), 60.
19 John D J, Steven G J, Joshua N W. Photonic crystals: molding the flow of light, Princeton University Press, USA,1995.
20 Rezaei S D, Dong Z, Chan J, et al.ACS Photonics, 2020, 8(1),18.
21 Shen Y C, Rinnerbauer V, Wang I, et al.ACS Photonics, 2015, 2(1), 27.
22 Proust J, Bedu F, Gallas B, et al. ACS Nano, 2017, 10(8), 7761.
23 Flauraud V, Reyes M, Paniagua-Dominguez R, et al. ACS Photonics, 2017, 4 (8), 1913.
24 Nagasaki Y, Suzuki M, Takahara J. Nano Letters,2017,17(12),7500.
25 Vashistha V, Vaidya G, Hegde R S, et al. ACS Photonics, 2017, 4 (5), 1076.
26 Gawlik B M, Cossio G, Kwon H, et al. Optics Express, 2018, 26(23), 30952.
27 Zhu T, Wu T, Liu Y, et al. Applied Optics, 2019, 58(25), 6742.
28 Koirala I, Shrestha V R, Park C S, et al. Scientific Reports, 2017, 7(1), 13574.
29 Jang J, Jeong H, Hu G, et al. Advanced Optical Materials, 2019, 7(4), 1801070.
30 Song H S, Lee G J, Yoo D E, et al. Scientific Reports, 2019, 9(1), 3350.
31 Yun J G, Sung J, Kim S J, et al. Scientific Reports, 2019, 9(1), 15381.
32 Jeong H, Yang Y, Cho H, et al. Microelectronic Engineering, 2020, 220, 111146.
33 Yeong J K, Young J Y, Gil J L, et al. ACS Applied Materials & Interfaces, 2019, 11(12), 11849.
34 Yang W, Xiao S, Song Q, et al. Nature Communications, 2020, 11(1), 1864.
35 Yuan J, Yin G, Jiang W, et al. Journal of Optics, 2017, 19(10), 105002.
36 Shang S, Yang W, Chen Z, et al. ACS Nano, 2018, 12(3), 2151.
37 Wu Y, Yang W, Fan Y, et al. Science Advances, 2019, 5(11), 0939.
38 Yang B, Liu W, Li Z, et al. Advanced Optical Materials, 2018, 6(4), 1701009.
39 Jiang H, Kaminska B. ACS Nano, 2018, 12(4), 3112.
40 Zhang C, Jing J, Wu Y, et al. ACS Nano, 2020, 14(2), 1418.
41 Dong Z, Ho J, Yu Y F, et al. Nano Letters, 2017, 17, 7620.
42 Park C S, Koirala I, Gao S, et al. Optics Express, 2019, 27(2), 667.
43 Yang J H, Babicheva V E, Yu M W, et al. ACS Nano, 2020, 14(5), 5678.
44 Nagasaki Y, Suzuki M, Hotta I, et al. ACS Photonics, 2018, 5(4), 1460.
45 Liu H, Yang H, Li Y, et al. Advanced Optical Materials, 2019, 7(8), 1801639.
46 Yang B, Liu W, Li Z, et al. Nano Letters, 2019,19(7), 4221.
47 Kumano N, Seki T, Ishii M, et al. Angewandte Chemie, 2010, 123(17), 4098.
48 Gao Y S, Huang C, Hao C L, et al. ACS Nano, 2018, 12(9), 8847.
49 Fu Q Q, Zhu H M, Ge J P.Advanced Functional Materials, 2018, 28(43), 1804628.
50 Ghobadi A, Hajian H, Soydan M C, et al. Scientific Reports, 2019, 9, 290.
51 Yang Z M, Ji C G, Cui Q Y, et al.Advanced Functional Materials, 2020, 8(12), 2000317.
[1] 李吉泰, 展悦, 冯明珠, 崔永岩. 超亲水-空气疏油水下超疏油不锈钢网的制备及性能[J]. 材料导报, 2022, 36(Z1): 22010079-5.
[2] 舒忠虎, 何建军, 段焱森, 罗金, 周承伟, 鲍江涌. 复合氟化改性制备EP-ZnO纳米超疏水涂层的研究[J]. 材料导报, 2021, 35(z2): 56-59.
[3] 卢跃磊, 刘伟阳, 李玉阁. 难混溶材料的抗辐照性能研究[J]. 材料导报, 2021, 35(z2): 311-317.
[4] 付磊, 林莉, 罗云蓉, 谢文玲, 王清远, 李辉. 梯度纳米结构材料疲劳性能研究进展[J]. 材料导报, 2021, 35(3): 3114-3121.
[5] 穆伟娜, 王力霞, 王琼, 蔡艳荣, 常春, 包德才. 钴铁双金属氢氧化物纳米片的制备及其在高电流下的电催化全解水性能[J]. 材料导报, 2021, 35(24): 24026-24031.
[6] 黄晓寒, 程华, 郑子云, 牛梓蓉, 张左群. 含铁氧体陶粒骨料电磁波损耗模型与性能研究[J]. 材料导报, 2021, 35(22): 22027-22032.
[7] 张鹏飞, 赖小明, 洪长青, 杨雷, 张玉生, 梁龙, 董薇, 刘峰, 马彬, 刘佳, 陈维强, 张璇, 陶积柏. 抗氧化三维纤维增强酚醛气凝胶的性能[J]. 材料导报, 2021, 35(16): 16155-16159.
[8] 付念, 谷雨, 郭雨, 张建飞, 陈道俊, 刘啸宇, 丛日东. Fe掺杂AlN纳米线/三维片层复合分级纳米结构的自组装生长[J]. 材料导报, 2020, 34(12): 12036-12039.
[9] 陈有为, 王夏天, 李琦, 张威波, 史丹, 黄姣, 陈丹超, 周生虎. “核-壳-冠”聚合物胶束模板合成无机中空纳米材料的研究进展[J]. 材料导报, 2020, 34(11): 11090-11098.
[10] 吴治涌, 水世显, 张显, 杨鹏, 万艳芬. 贵金属纳米颗粒-二维过渡金属硫化物复合纳米结构:制备技术与光电性能[J]. 材料导报, 2019, 33(3): 426-432.
[11] 李大玉, 张文韬, 张超. 不同种类金属掺杂改性TiO2材料光催化性能的研究进展[J]. 材料导报, 2019, 33(23): 3900-3907.
[12] 尹晓丽, 于思荣, 胡锦辉. Ni3S2微纳米结构超疏水表面的制备及耐蚀性能[J]. 材料导报, 2019, 33(20): 3372-3376.
[13] 陈可, 马会茹. pH响应性光子晶体[J]. 《材料导报》期刊社, 2018, 32(7): 1094-1099.
[14] 马志鸣, 肖仁贵, 廖霞, 柯翔. 片层纳米结构磷酸铁制备及对磷酸铁锂电性能的影响[J]. 材料导报, 2018, 32(19): 3325-3331.
[15] 王丹彤,周涵,范同祥. 生物宽带反射结构色效应研究综述[J]. 材料导报, 2018, 32(19): 3465-3472.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed