Please wait a minute...
材料导报  2021, Vol. 35 Issue (16): 16155-16159    https://doi.org/10.11896/cldb.20050185
  高分子与聚合物基复合材料 |
抗氧化三维纤维增强酚醛气凝胶的性能
张鹏飞1, 赖小明1, 洪长青2, 杨雷3, 张玉生1, 梁龙1, 董薇1, 刘峰4, 马彬4, 刘佳1, 陈维强1, 张璇1, 陶积柏1
1 北京卫星制造厂有限公司,复材产品事业部,北京 100094;
2 哈尔滨工业大学,复合材料与结构研究所,哈尔滨 150001;
3 中国空间技术研究院,载人总体部,北京 100094;
4 中国空间技术研究院 机械系统事业部,北京 100094
Properties of Anti-oxidation 3D Fiber Preform Reinforced Phenolic Aerogel Material
ZHANG Pengfei1, LAI Xiaoming1, HONG Changqing2, YANG Lei3, ZHANG Yusheng1, LIANG Long1, DONG Wei1, LIU Feng4, MA Bin4, LIU Jia1, CHEN Weiqiang1, ZHANG Xuan1, TAO Jibai1
1 Composites Division, Beijing Spacecrafts, Beijing 100094, China;
2 Institute of Composite Materials and Structures, Harbin Institute of Technology, Harbin 150001, China;
3 Manned General Department, China Academy of Space Technology, Beijing 100094, China;
4 Mechanical Structure Division, China Academy of Space Technology, Beijing 100094, China
下载:  全 文 ( PDF ) ( 4765KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用低密度三维刚性结构作为增强体,利用Si-B-C陶瓷先驱体对纤维进行抗氧化防护,并在纤维骨架的孔隙中填充纳米隔热酚醛树脂,形成了一种抗氧化三维纤维增强酚醛气凝胶材料(三维结构热防护材料)。该材料密度从0.3 g/cm3提升至0.7 g/cm3,其弯曲强度从12 MPa提升至57 MPa,拉伸强度从10 MPa提升至46 MPa,压缩强度从2 MPa提升至18 MPa,比热容维持在1.07~1.1 J/(g·K),热导率从0.078 W/(m·K)提升至0.12 W/(m·K)。经15 min、2 000 ℃的电弧风洞烧蚀后,该材料后退量为10 mm。综合热力性能测试表明,该材料具有优异的力学强度和抗失效能力,而且纤维采用先进的抗氧化处理,在烧蚀过程中利用原位陶瓷化反应,提升了高温抗烧蚀能力,这种三维结构能够实现多种复杂构型近净尺寸成型,有效提升了防热材料的一体化制备、高效装配的任务适应能力。该类材料在载人航天、高超飞行器防热结构中具有广阔的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张鹏飞
赖小明
洪长青
杨雷
张玉生
梁龙
董薇
刘峰
马彬
刘佳
陈维强
张璇
陶积柏
关键词:  轻质热防护材料  三维刚性结构  陶瓷先驱体  纳米结构    
Abstract: In this paper, a novel anti-oxidation 3D fiber preform reinforced phenolic aerogel thermal protection system (3DTPS) was invented. Herein, a low density three-dimensional rigid preform was used as reinforcement, and the Si-B-C preceramic was used to protect the fibers from oxidation, nano-phenolic resin was impregnated into the pore of the preform to improve the capacity of heat shield. With the density increasing from 0.3 g/cm3 to 0.7 g/cm3, the flexural strength, the tensile strength, the compressive strength and the thermal conductivity increased from 12 MPa, 10 MPa, 2 MPa and 0.078 W/(m·K) to 57 MPa, 46 MPa, 18 MPa and 0.12 W/(m·K) respectively, while the specific heat capacity maintained at 1.07~1.1 J/(g·K). The ablation recession was 10 mm after tested in an arc wind tunnel at 2 000 ℃ for 15 min. The comprehensive thermos-mechanical properties revealed that such material can greatly improve the mechanical strength and its excellent anti-failure ability. Moreover, in-situ pyrolysis reaction was adopted in the ablation process to enhance the anti-oxidation ability at high temperature. Especially, this three-dimensional structure can realize near-net-size forming of various complex forms, which effectively enhanced the integration and assembly of the thermal protection material in task. This kind of material has broad application prospects in thermal protection structure of manned spacecrafts and hypersonic aircrafts.
Key words:  lightweight thermal protection material    three-dimensional rigid preform    preceramic    nano-structure
                    发布日期:  2021-09-07
ZTFLH:  TB332  
基金资助: 国家科学自然基金项目(51872066)
通讯作者:  sflyzhang@126.com   
作者简介:  张鹏飞,高级工程师,2010年毕业于西北工业大学。现就职于北京卫星制造厂有限公司,主要从事星船高性能纤维增强树脂基结构复合材料以及轻质热防护功能复合材料的研究与应用工作。
引用本文:    
张鹏飞, 赖小明, 洪长青, 杨雷, 张玉生, 梁龙, 董薇, 刘峰, 马彬, 刘佳, 陈维强, 张璇, 陶积柏. 抗氧化三维纤维增强酚醛气凝胶的性能[J]. 材料导报, 2021, 35(16): 16155-16159.
ZHANG Pengfei, LAI Xiaoming, HONG Changqing, YANG Lei, ZHANG Yusheng, LIANG Long, DONG Wei, LIU Feng, MA Bin, LIU Jia, CHEN Weiqiang, ZHANG Xuan, TAO Jibai. Properties of Anti-oxidation 3D Fiber Preform Reinforced Phenolic Aerogel Material. Materials Reports, 2021, 35(16): 16155-16159.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20050185  或          http://www.mater-rep.com/CN/Y2021/V35/I16/16155
1 Ye P J, Peng J. Strategic Study of CAE, 2006(8),13(in Chinese).
叶培建, 彭兢. 中国工程科学, 2006(8),13.
2 Wang X J. Spacecraft Entry and Return Technology, China Astronautic Publishing House, China, 2009(in Chinese).
王希季. 航天器进入与返回技术,中国宇航出版社, 2009.
3 Yang L, Zhang B N, Guo B, et al. Acta Aeronautica ET Astronautica Sinica, 2015(3), 703(in Chinese).
杨雷, 张柏楠, 郭斌, 等. 航空学报, 2015(3),703.
4 Wu G T. Spacecraft Engineering, 2009(4),13(in Chinese).
吴国庭.航天器工程, 2009(4),13.
5 Wu G T. Spacecraft Engineering, 1997(1), 85(in Chinese).
吴国庭. 航天器工程, 1997(1), 85.
6 Wu G T. Spacecraft Engineering, 2004(3),13(in Chinese).
吴国庭. 航天器工程, 2004(3),13.
7 Chauvin L, Erb R, Greenshields D, et al. Entry Vehicle Systems and Technology Meeting, DOI: 10.2514/6.1968-1142.
8 Willcockson W H. Journal of Spacecraft and Rockets, 1999, 36(3), 470.
9 Li W J, Huang H M. Polymer Composites, 2014, 3, 1034.
10 Titov E V, Kumar R, Levin D A. AIP Conference Proceedings, 2011,1333,492.
11 Tran H, Johnson C, Rasky D, et al. Phenolic impregnated carbon ablator (PICA) as thermal protection systems for discovery missions. Washington, NASA, 1997.
12 Milos F S, Chen Y K. Ablation and thermal response property model validation for phenolic impregnated carbon ablator, AIAA, 2009.
13 Milos F S, Gasch M J, Prabhu D K. Journal of Spacecraft and Rockets,2015, 52(3), 804.
14 Li Z P. Acta Materiae Compositae Sinica, 2011, 28(2), 1(in Chinese).
李仲平.复合材料学报, 2011, 28(2), 1.
15 Xing L Q. Spacecraft Engineering, 2001, 10(2), 8(in Chinese).
邢连群. 航天器工程, 2001, 10(2), 8.
16 Wang C M, Liang X, Sun B G, et al. Aerospace Materials & Technology, 2011, 41(2), 5(in Chinese).
王春明, 梁馨, 孙宝岗, 等. 宇航材料工艺, 2011, 41(2), 5.
17 Dong Y Z. Spacecraft Engineering, 2002, 11(4), 34(in Chinese).
董彦芝. 航天器工程, 2002, 11(4), 34.
18 Zhang X H, Hu P, Han J C, et al. Materials China, 2011, 30(1), 27(in Chinese).
张幸红, 胡平, 韩杰才, 等. 中国材料进展,2011,30(1),27.
19 Chen Y F, Hong C Q, Hu C L, et al. Advanced Ceramics, 2017,38(5), 311(in Chinese).
陈玉峰, 洪长青,胡成龙, 等.现代技术陶瓷, 2017, 38(5), 311.
20 Han J C, Hong C Q, Zhang X H, et al. Manned Spaceflight, 2015,21(4), 315(in Chinese).
韩杰才, 洪长青, 张幸红, 等. 载人航天, 2015,21(4), 315.
21 张鹏飞, 梁龙, 陶积柏, 等.中国专利,ZL 201510616845.8, 2018.
22 Feldman J D, Ellerby D, Stackpoole M, et al. South Texas Society for the Advancement of Materials and Process Engineering (SAMPE) Chapter Meeting. Washington, D. C., NASA, 2015, 1.
23 Szalai C, Slimko E, Hoffman P. Journal of Spacecraft and Rocket, 2014,51(4),1167.
24 Milos F S, Chen Y K, Mahzari M. Arcjet tests and thermal response analysis for dual-layer woven carbon phenolic, AIAA-2017-3353, Reston, VA, AIAA, 2017.
25 Walker S P, Daryabeigi K, Samareh J A, et al. Preliminary development of a multifunctional hot structure heat shield, AIAA-2014-0350. Reston, VA, AIAA, 2014.
[1] 付磊, 林莉, 罗云蓉, 谢文玲, 王清远, 李辉. 梯度纳米结构材料疲劳性能研究进展[J]. 材料导报, 2021, 35(3): 3114-3121.
[2] 付念, 谷雨, 郭雨, 张建飞, 陈道俊, 刘啸宇, 丛日东. Fe掺杂AlN纳米线/三维片层复合分级纳米结构的自组装生长[J]. 材料导报, 2020, 34(12): 12036-12039.
[3] 陈有为, 王夏天, 李琦, 张威波, 史丹, 黄姣, 陈丹超, 周生虎. “核-壳-冠”聚合物胶束模板合成无机中空纳米材料的研究进展[J]. 材料导报, 2020, 34(11): 11090-11098.
[4] 吴治涌, 水世显, 张显, 杨鹏, 万艳芬. 贵金属纳米颗粒-二维过渡金属硫化物复合纳米结构:制备技术与光电性能[J]. 材料导报, 2019, 33(3): 426-432.
[5] 李大玉, 张文韬, 张超. 不同种类金属掺杂改性TiO2材料光催化性能的研究进展[J]. 材料导报, 2019, 33(23): 3900-3907.
[6] 尹晓丽, 于思荣, 胡锦辉. Ni3S2微纳米结构超疏水表面的制备及耐蚀性能[J]. 材料导报, 2019, 33(20): 3372-3376.
[7] 马志鸣, 肖仁贵, 廖霞, 柯翔. 片层纳米结构磷酸铁制备及对磷酸铁锂电性能的影响[J]. 材料导报, 2018, 32(19): 3325-3331.
[8] 彭智伟,刘志宇,傅刚. ZnO四足和多足纳米结构的制备和光致发光性能研究*[J]. 材料导报编辑部, 2017, 31(10): 16-18.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed