Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (10): 16-18    https://doi.org/10.11896/j.issn.1005-023X.2017.010.004
  材料研究 |
ZnO四足和多足纳米结构的制备和光致发光性能研究*
彭智伟,刘志宇,傅刚
广州大学物理与电子工程学院, 广州 510006
Fabrication and Photoluminescence Property of ZnO Tetrapod and Multipod Nanostructures
PENG Zhiwei, LIU Zhiyu, FU Gang
School of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006
下载:  全 文 ( PDF ) ( 1087KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用简单的热蒸发法,在没有使用载气和催化剂的情况下成功制备出ZnO四足和多足纳米结构。采用场发射扫描电镜、X射线衍射、高分辨透射电子显微镜和荧光分光光度计研究了ZnO纳米结构的形貌、结构和光致发光性能。结果表明所合成的ZnO是由具有六方纤锌矿结构的四足和多足纳米结构组成,足部呈棒状并沿[0001]方向生长。提出了四足和多足ZnO纳米结构的生长机制。在室温下的光致发光光谱中,494 nm处出现一个较强的绿色发射峰,391 nm处出现一个较弱的紫外发射峰。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
彭智伟
刘志宇
傅刚
关键词:  氧化锌  热蒸发  纳米结构  光致发光    
Abstract: ZnO tetrapod and multipod nanostructures were successfully synthesized without the presence of carrier gas and ca-talyst through a simple thermal evaporation method. The morphology, structure and photoluminescence properties of ZnO nanostructures were characterized by field-emission scanning electron microscopy, X-ray diffraction, transmission electron microscopy and fluorescence spectroscopy. The results demonstrated that the as-synthesized ZnO consisted of tetrapod and multipod nanostructures with a hexagonal wurtzite structure. The legs of the nanostructures had rod-like shape and grew preferably in the [0001] direction. The growth mechanisms of the ZnO tetrapod and multipod nanostructures were proposed. Room temperature photoluminescence (PL) spectra showed that the as-synthesized ZnO nanostructures had a strong green emission centered at 494 nm and a weak ultraviolet emission at 391 nm.
Key words:  zinc oxide    thermal evaporation    nanostructure    photoluminescence
                    发布日期:  2018-05-08
ZTFLH:  TB383  
基金资助: *广州市属高校科研计划项目(2012A090)
作者简介:  彭智伟:男,1981年生,博士,讲师,主要研究方向为纳米发光材料的制备和性能研究E-mail:zhiwei_peng@aliyun.com
引用本文:    
彭智伟,刘志宇,傅刚. ZnO四足和多足纳米结构的制备和光致发光性能研究*[J]. 材料导报编辑部, 2017, 31(10): 16-18.
PENG Zhiwei, LIU Zhiyu, FU Gang. Fabrication and Photoluminescence Property of ZnO Tetrapod and Multipod Nanostructures. Materials Reports, 2017, 31(10): 16-18.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.010.004  或          http://www.mater-rep.com/CN/Y2017/V31/I10/16
1 Li J, Lin Y, Lu J F, et al. Single mode ZnO whispering-gallery submicron cavity and graphene improved lasing performance[J]. ACS Nano,2015,9(7):6794.
2 Hao Y H, Zhao J W, Qin L R, et al. Facile fabrication of UV photodetector based on spatial network of tetrapod ZnO nanostructures[J]. Micro Nano Lett,2012,7(3):200.
3 Tang X B, Li G M, Zhou S M. Ultraviolet electroluminescence of light-emitting diodes based on single n-ZnO/p-AlGaN heterojunction nanowires[J]. Nano Lett,2013,13(11):5046.
4 Zulkifli Z, et al. Highly transparent and conducting C∶ZnO thin film for field emission displays[J]. RSC Adv,2014,4(110):64763.
5 Rodrigues J, Cerqueira A F R, Sousa M G, et al. Exploring the potential of laser assisted flow deposition grown ZnO for photovoltaic applications[J]. Mater Chem Phys,2016,177:322.
6 Tang X S, Choo E S G, Li L, et al. Synthesis of ZnO nanoparticles with tunable emission colors and their cell labeling applications[J]. Chem Mater,2010,22(11):3383.
7 Xu S, Wang Z L. One-dimensional ZnO nanostructures: Solution growth and functional properties[J]. Nano Res,2011,4(11):1013.
8 Biswas I, Majumder M, Piyali Roy (Kundu), et al. Nanostructured ZnO thin film with improved optical and electrochemical properties prepared by hydrothermal electrochemical deposition technique[J]. Micro Nano Lett,2016,11(7):351.
9 Guo H L,Zhu Q,Wu X L,et al. Oxygen deficient ZnO1-x nanoshee-ts with high visible light photocatalytic activity[J]. Nanoscale,2015,7(16):7216.
10 Mousavi S H, et al. Growth and characterization of wurtzite ZnO nanocombs and nanosaws[J]. Mater Lett,2012,70:86.
11 Hussain S, Liu T, Kashif M, et al. Surfactant dependent growth of twinned ZnO nanodisks[J]. Mater Lett,2014,118(3):165.
12 Rakshit T, Manna I, Ray S K. Shape controlled Sn doped ZnO nanostructures for tunable optical emission and transport properties[J]. AIP Adv,2013,3(11):112112.
13 Peng Z W, Dai G Z, Zhou W C, et al. Photoluminescence and Raman analysis of novel ZnO tetrapod and multipod nanostructures[J]. Appl Surf Sci,2010,256(22):6814.
14 Bacsa R R, Jeannette D, Marc V, et al. Synthesis and structure-property correlation in shape-controlled ZnO nanoparticles prepared by chemical vapor synthesis and their application in dye-sensitized solar cells[J]. Adv Funct Mater,2009,19(6):875.
15 Najim M, et al. Ultra-wide bandwidth with enhanced microwave absorption of electroless Ni-P coated tetrapod-shaped ZnO nano- and microstructures[J]. Phys Chem Chem Phys,2015,17(35):22923.
16 Zhou X T, Lin T H, Liu Y H, et al. Structural, optical, and improved field-emission properties of tetrapod-shaped Sn-doped ZnO nanostructures synthesized via thermal evaporation[J]. ACS Appl Mater Interfaces,2013,5(20):10067.
17 Mishra Y K, Modi G, Cretu V, et al. Direct growth of freestanding ZnO tetrapod networks for multifunctional applications in photocatalysis, UV photodetection, and gas sensing[J]. ACS Appl Mater Interfaces,2015,7(26):14303.
18 Zhao Y N, Cao M S, Jin H B, et al. Catalyst-free synthesis, growth mechanism and optical properties of multipod ZnO with nanonail-like legs[J]. Scr Mater,2006,54(12):2057.
19 Silva R A, Orlandi M O. Influence of synthesis route on the radiation sensing properties of ZnO nanostructures[J]. J Nanomater,2016,2016(18):1.
20 Zhao G L, Xia L, Wu S S, et al. Ultrafast and mass production of ZnO nanotetrapods by induction-heating under air ambient[J]. Mater Lett,2014,118(3):126.
21 Lee C H, Chiu W H, Lee K M, et al. The influence of tetrapod-like ZnO morphology and electrolytes on energy conversion efficiency of dye-sensitized solar cells[J]. Electrochim Acta,2010,55(28):8422.
22 Jiang J Y, Li Y F, Tan S W, et al. Synthesis of zinc oxide nanotetrapods by a novel fast microemulsion-based hydrothermal method[J]. Mater Lett,2010,64(20):2191.
23 Umar A. Growth of multipod ZnO architectures made by accumulation of hexagonal nanorods for dye sensitized solar cell (DSSC) application[J]. J Nanosci Nanotechnol,2015,15(9):6801.
24 Alsultany F H, Hassan Z, Ahmed N M. Large-scale uniform ZnO tetrapods on catalyst free glass substrate by thermal evaporation method[J]. Mater Res Bull,2016,79:63.
25 Iwanaga H, Fujii M, Takeuchi S. Growth model of tetrapod zinc oxide particles[J]. J Cryst Growth,1993,134(3):275.
26 Dai Y, Zhang Y, Wang Z L. The octa-twin tetraleg ZnO nanostructures[J]. Solid State Commun,2003,126(11):629.
27 Zheng K, Xu C X, Zhu G P, et al. Formation of tetrapod and multipod ZnO whiskers[J]. Physica E,2008,40(8):2677.
28 Feng L B, Liu A H, Ma Y Y, et al. Structural and optical properties of ZnO whiskers grown on ZnO-coated silicon substrates by non-catalytic thermal evaporation process[J]. Physica E,2010,42(7):1928.
[1] 王恩胜, 余丽萍, 廉世勋, 周文理. 全无机钙钛矿量子点的研究进展[J]. 材料导报, 2019, 33(5): 777-783.
[2] 吴治涌, 水世显, 张显, 杨鹏, 万艳芬. 贵金属纳米颗粒-二维过渡金属硫化物复合纳米结构:制备技术与光电性能[J]. 材料导报, 2019, 33(3): 426-432.
[3] 黄国庆, 白震媛, 陈兆文, 刘琦, 王君. 铀(Ⅵ)在氧化锌修饰聚丙烯腈纤维上的吸附行为[J]. 材料导报, 2019, 33(14): 2436-2443.
[4] 孙钰琨, 白波, 马美玲, 王洪伦, 索有瑞, 谢黎明, 柴禛. SiO2基底Nb原位掺杂MoS2纳米薄膜的制备及场效应[J]. 材料导报, 2019, 33(12): 1975-1982.
[5] 李怀明, 孙秋, 宋英. W掺杂对Zn0.98Al0.02O陶瓷热电性能的影响[J]. 材料导报, 2019, 33(12): 1959-1962.
[6] 李丹, 张忞灏, 廖佩姿, 谢远, 甄贺伟, 徐晓玲, 周祚万. 低维氧化锌晶面调控及催化抗菌活性研究进展[J]. 材料导报, 2019, 33(1): 56-64.
[7] 甘一升, 陈苗苗, 王玉龙, 万丽, 孔梦琴, 胡航, 王世敏. 以ZnO纳米棒阵列为电子传输层的无空穴层有机-无机杂化钙钛矿太阳能电池[J]. 材料导报, 2018, 32(23): 4047-4050.
[8] 马志鸣, 肖仁贵, 廖霞, 柯翔. 片层纳米结构磷酸铁制备及对磷酸铁锂电性能的影响[J]. 材料导报, 2018, 32(19): 3325-3331.
[9] 畅庚榕, 刘明霞, 马飞, 徐可为. 微应变诱导各向异性硅纳米晶形成及其光学特性[J]. 材料导报, 2018, 32(18): 3104-3109.
[10] 康淮,陆轴,钟志有,龙浩. 磁控溅射制备镁镓共掺氧化锌透明半导体薄膜及其性能研究[J]. 《材料导报》期刊社, 2018, 32(11): 1938-1942.
[11] 张小红, 杨卿, 张旭晨, 马研, 易筱银. 热氧化ZnS∶Ga制备ZnO∶Ga薄膜及其光致发光性能*[J]. 《材料导报》期刊社, 2017, 31(18): 11-15.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed