Please wait a minute...
材料导报  2024, Vol. 38 Issue (5): 22090259-10    https://doi.org/10.11896/cldb.22090259
  高分子与聚合物基复合材料 |
聚苯胺红外电致变色器件研究进展
陈渊泽, 牛春晖, 王雷*, 杨明庆, 张世玉, 吕勇
北京信息科技大学仪器科学与光电工程学院,北京 100192
Advances in Polyaniline Based Infrared Electrochromic Devices
CHEN Yuanze, NIU Chunhui, WANG Lei*, YANG Mingqing, ZHANG Shiyu, LYU Yong
School of Instrument Science and Optoelectronic Engineering, Beijing Information Science and Technology University, Beijing 100192, China
下载:  全 文 ( PDF ) ( 15639KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 电致变色是材料反射、吸收等光学性质在外加电场驱动下发生稳定、可逆变化的现象,在不同波段可表现为颜色、红外发射率等变化。红外电致变色器件(IR-ECDs)能够动态调节物体的红外光学特性,在自适应伪装、热管理等应用中受到广泛关注。作为最有代表性的有机电致变色材料,聚苯胺(PANI)制备方法简单,电化学性能优异,在多波段电致变色领域有着巨大的潜在应用价值。本文从电致变色器件结构出发,介绍了从可见电致变色到红外电致变色的原理和器件结构的演变,对近年来增强聚苯胺红外电致变色器件性能的策略和最新进展进行了归纳和分析,讨论了其多功能化应用的拓展方向,最后对所面临的挑战与未来的发展方向进行了总结与展望,为今后发展优异性能的IR-ECDs提供了参考,希望能够对本领域研究者有所启发,促进电致变色领域的发展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈渊泽
牛春晖
王雷
杨明庆
张世玉
吕勇
关键词:  聚苯胺  红外  电致变色  器件结构  多功能    
Abstract: Electrochromism refers to the phenomenon of stable and reversible changes in the optical properties of materials under the driving of an external electric field. Electrochromism shows the changes of color, infrared emission rate etc. in different wavelength ranges. Infrared electrochromic devices (IR-ECDs) are capable of modulating the infrared optical properties of objects dynamically, and have received much attention in applications such as thermal management and adaptive camouflage. Polyaniline (PANI), as the most representative organic electrochromic material, has easy fabrication processes and excellent electrochemical properties. It has great potential application value in multi-band electrochromism. In this review, we first present the evolution of the device structures from visible electrochromism to infrared electrochromism. And then we summarize recent advances to improve PANI-based IR-ECDs performance in terms of different functional layers. The frontier applications of multifunctional IR-ECDs are discussed. Finally, the challenges of IR-ECDs are discussed and prospects for further development are proposed. This review provides a reference for the development of IR-ECDs with excellent performance. We hope it would be useful for researchers in this field to promote the development of the electrochromic field.
Key words:  polyaniline    infrared    electrochromism    device structure    multifunction
出版日期:  2024-03-10      发布日期:  2024-03-18
ZTFLH:  O649  
基金资助: 北京信息科技大学“勤信人才”培育计划 (QXTCP C202105);北京信息科技大学校基金 (2021XJJ11; 2021XJJ09)
通讯作者:  *王雷,北京信息科技大学仪器科学与光电工程学院副教授、硕士研究生导师。2017年北京理工大学博士毕业,随后于北京理工大学材料学院进行博士后研究,2020年9月加入北京信息科技大学仪器科学与光电工程学院,工作至今。目前主要从事光电材料与器件、量子点激光等方面的研究工作,发表论文20余篇,包括Science China Materials、J. Phys. Chem. Lett.、Opt. Mater. Express、Opt. Express等。 wanglei20202452@bistu.edu.cn   
作者简介:  陈渊泽,2020年于深圳大学获得工学学士学位。现为北京信息科技大学仪器科学与光电工程学院硕士研究生,在牛春晖教授的指导下进行研究。目前主要研究领域为电致变色有机材料的合成和应用。
引用本文:    
陈渊泽, 牛春晖, 王雷, 杨明庆, 张世玉, 吕勇. 聚苯胺红外电致变色器件研究进展[J]. 材料导报, 2024, 38(5): 22090259-10.
CHEN Yuanze, NIU Chunhui, WANG Lei, YANG Mingqing, ZHANG Shiyu, LYU Yong. Advances in Polyaniline Based Infrared Electrochromic Devices. Materials Reports, 2024, 38(5): 22090259-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22090259  或          http://www.mater-rep.com/CN/Y2024/V38/I5/22090259
1 Demiryont H, Moorehead D. Solar Energy Materials & Solar Cells, 2009, 93(12), 2075.
2 Dou S L, Xu H B, Zhao J P, et al. Advanced Materials, 2021, 33(6), 2000697.
3 Wei H, Gu J X, Ren F F, et al. Small, 2021, 17(35), 2100446.
4 Hsu P C, Liu X G, Liu C, et al. Nano Letters, 2015, 15(1), 365.
5 Mandal J, Du S C, Dontigny M, et al. Advanced Functional Materials, 2018, 28(36), 1802180.
6 Mandal J, Jia M X, Overvig A, et al. Joule, 2019, 3(12), 3088.
7 Mortimer R J, Dyer A L, Reynolds J R. Displays, 2006, 27(1), 2.
8 Thakur V K, Ding G Q, Ma J, et al. Advanced Materials, 2012, 24(30), 4071.
9 Bange K, Gambke T. Advanced Materials, 1990, 2(1), 10.
10 Tong Z Q, Yang H W, Na L, et al. Journal of Materials Chemistry C, 2015, 3(13), 3159.
11 Wu L L, Fang H J, Zheng C, et al. Journal of Materials Chemistry C, 2019, 7(34), 10446.
12 Kim B, Koh J K, Park J, et al. Nano Convergence, 2015, 2(1), 19.
13 Schwendeman I, Hwang J, Welsh D M, et al. Advanced Materials, 2001, 13(9), 634.
14 Huang Y S, Zhang Y Z, Zeng X T, et al. Applied Surface Science, 2002, 202(1-2), 104.
15 Wei Y X, Zhou J L, Zheng J M, et al. Electrochimica Acta, 2015, 166, 277.
16 Lin S Y, Wang C M, Kao K S, et al. Journal of Sol-Gel Science and Technology, 2010, 53(1), 51.
17 Louet C, Cantin S, Dudon J P, et al. Solar Energy Materials & Solar Cells, 2015, 143, 141.
18 Dulgerbaki C, Oksuz A U. Polymers for Advanced Technologies, 2016, 27(1), 73.
19 Tian Y L, Zhang X A, Dou S L, et al. Solar Energy Materials & Solar Cells, 2017, 170, 120.
20 Feng T, Guo H L, Zhang B J, et al. Journal of the Electrochemical Society, 2022, 169(3), 036501.
21 Chu J, Lu D Y, Wu B H, et al. Solar Energy Materials & Solar Cells, 2018, 177, 70.
22 Korent A, Žagar Soderžnik K, Šturm S, et al. Journal of the Electroche-mical Society, 2020, 167(10), 106504.
23 Zhang S H, Ren J Y, Chen S, et al. Journal of Electroanalytical Chemistry, 2020, 870, 114248.
24 Huang X Y, Chen J, Xie H J, et al. Science China Materials, 2022, 65, 2217.
25 Zhang S H, Chen S, Hu F, et al. Solar Energy Materials & Solar Cells, 2019, 200, 109951.
26 Zhong Y, Chai Z S, Liang Z M, et al. ACS Applied Materials & Interfaces, 2017, 9(39), 34085.
27 Zhou K L, Wang H, Jiu J T, et al. Chemical Engineering Journal, 2018, 345, 290.
28 An T C, Ling Y Z, Gong S, et al. Advanced Materials Technologies, 2019, 4(3), 1800473.
29 Wang K, Wu H P, Meng Y N, et al. Energy & Environmental Science, 2012, 5(8), 8384.
30 Yilmaz P, Magni M, Martinez S, et al. ACS Applied Energy Materials, 2020, 3(4), 3779.
31 Topart P, Hourquebie P. Thin Solid Films, 1999, 352(1-2), 243.
32 Chandrasekhar P, Zay B J, Birur G C, et al. Advanced Functional Materials, 2002, 12(2), 95.
33 Li H, Xie K, Pan Y, et al. Synthetic Metals, 2009, 159(13), 1386.
34 Li F, Liu J, Ma Y, et al. Journal of Materials Chemistry A, 2019, 7(25), 15378.
35 Song S S, Xu G P, Wang B, et al. Synthetic Metals, 2021, 278, 116822.
36 Lu F F, Tan P Y, Han Y G. Journal of Applied Polymer Science, 2021, 138(1), 49622.
37 Tan P Y, Lu F F, Han Y G. Solar Energy Materials & Solar Cells, 2021, 219, 110808.
38 Jimenez P, Levillain E, Aleveque O, et al. Angewandte Chemie International Edition, 2017, 56(6), 1553.
39 Jelmy E J, Ramakrishnan S, Rangarajan M, et al. Bulletin of Materials Science, 2013, 36(1), 37.
40 Xing J, Liao M Y, Zhang C, et al. Physical Chemistry Chemical Physics, 2017, 19(21), 14030.
41 Huang X Y, Niu Q Q, Fan S N, et al. Chemical Engineering Journal, 2021, 417, 128126.
42 Tian Y L, Zhang X A, Dou S L, et al. Solar Energy Materials & Solar Cells, 2017, 170, 120.
43 Xu G P, Zhang L P, Wang B, et al. Solar Energy Materials & Solar Cells, 2020, 208, .
44 Xu G P, Zhang L P, Wang B, et al. Journal of Materials Chemistry C, 2020, 8(38), 13336.
45 Wu S L, Jia C Y, Fu X Q, et al. Electrochimica Acta, 2013, 88, 322.
46 Wang B, Zhang L P, Xu G P, et al. Materials Chemistry and Physics, 2020, 248, 122866.
47 Zhang L P, Xu G P, Wang L B, et al. Dyes and Pigments, 2021, 187, 109084.
48 Zhang L P, Wang B, Li X B, et al. Journal of Materials Chemistry C, 2019, 7(32), 9878.
49 Chandrasekhar P, Zay B J, Lawrence D, et al. Journal of Applied Polymer Science, 2014, 131(19), 40850.
50 Tan P Y, Lu F F, Han Y G. Dyes and Pigments, 2022, 199, 110088.
51 Wang B, Xu G P, Song S S, et al. Electrochimica Acta, 2021, 390, 138891.
52 Wang B, Xu G P, Song S S, et al. Chemical Engineering Journal, 2022, 445, 136819.
53 Qin T, Deng L W, Zhang P, et al. Nanoscale Research Letters, 2022, 17(1), 51.
54 Sonavane A C, Inamdar A I, Deshmukh H P, et al. Journal of Physics D: Applied Physics, 2010, 43(31), 315102.
55 Cai G F, Tu J P, Zhou D, et al. The Journal of Physical Chemistry C, 2013, 117(31), 15967.
56 Lu F F, Tan P Y, Ren D F, et al. Dyes and Pigments, 2022, 200, 110179.
57 Zhang L P, Li D M, Li X B, et al. Dyes and Pigments, 2019, 170, 107570.
58 Tu L L, Jia C Y, Weng X L, et al. Synthetic Metals, 2011, 161(17-18), 2045.
59 Weng X L, Wu S L, Liu Y N, et al. Organic Electronics, 2017, 51, 190.
60 Zhang L P, Xia G L, Li X B, et al. Synthetic Metals, 2019, 248, 88.
61 Li X B, Zhang L P, Wang B, et al. Electrochimica Acta, 2020, 332, 135357.
62 Wu T Y, Li W B, Kuo C W, et al. International Journal of Electrochemical Science, 2013, 8(8), 10720.
63 Xu G P, Wang B, Song S S, et al. Chemical Engineering Journal, 2021, 422, 130064.
64 Xu G P, Wang B, Song S S, et al. Advanced Materials Technologies, 2022, 7, 2101381.
65 Lu W, Fadeev A G, Qi B H, et al. Journal of the Electrochemical Society, 2004, 151(2), H33.
66 Li X B, Zhang L P, Xu G P, et al. Electrochimica Acta, 2020, 358, 136935.
67 Tian Y Y, Zhang W K, Cong S, et al. Advanced Functional Materials, 2015, 25(36), 5833.
68 Koketsu T, Ma J W, Morgan B J, et al. Nature Materials, 2017, 16(11), 1142.
69 Wan F, Zhang L L, Dai X, et al. Nature Communications, 2018, 9(1), 1656.
70 Liu Y W, Cao S, Liang Y, et al. Solar Energy Materials & Solar Cells, 2022, 238, 111616.
71 Gong H, Ai J R, Li W Z, et al. ACS Applied Materials & Interfaces, 2021, 13(42), 50319.
72 Eric Shen D, sterholm A M, Reynolds J R. Journal of Materials Che-mistry C, 2015, 3(37), 9715.
73 Zhang S, Hu F, Chen S, et al. Journal of Electronic Materials, 2019, 48(8), 4797.
74 Wang J M, Zhang L, Yu L, et al. Nature Communications, 2014, 5, 4921.
75 Li H Z, Firby C J, Elezzabi A Y. Joule, 2019, 3(9), 2268.
76 Zhao S Q, Gao X, Chen L S, et al. Applied Materials Today, 2022, 28, 101543.
77 Guo J J, Diao X G, Wang M, et al. ACS Applied Materials & Interfaces, 2022, 14(8), 10517.
78 Luo Y X, Jin H R, Lu Y C, et al. ACS Energy Letters, 2022, 7(6), 1880.
79 Yeh M H, Lin L, Yang P K, et al. ACS Nano, 2015, 9(5), 4757.
80 Sun J M, Pu X, Jiang C Y, et al. Science Bulletin, 2018, 63(12), 795.
81 Huang J M, Ren Z W, Zhang Y K, et al. Advanced Energy Materials, 2022, 12, 2201042.
82 Wang Y Y, Jing X L. Polymers for Advanced Technologies, 2005, 16(4), 344.
83 Bora P J, Anil A G, Ramamurthy P C, et al. Materials Advances, 2020, 1(2), 177.
84 Sarkar B, Li X D, Quenneville E, et al. Journal of Materials Chemistry C, 2021, 9(46), 16558.
85 Tang J H, Ma L, Tian N, et al. Materials Science and Engineering: B, 2014, 186(1), 26.
86 John H, Thomas R M, Jacob J, et al. Polymer Composites, 2007, 28(5), 588.
87 Barnes A, Despotakis A, Wong T C P, et al. Smart Materials and Structures, 1998, 7(6), 752.
88 Pal R, Goyal S L, Rawal I, et al. Journal of Physics and Chemistry of Solids, 2022, 169, 110867.
89 Jiang Y, Ou J F, Luo Z C, et al. Small, 2022, 18, 2201377.
90 Li W, Li X F, Zhang X T, et al. ACS Applied Energy Materials, 2020, 3(9), 9408.
91 Peng B G, Yang Y C, Ju T X, et al. ACS Applied Materials & Interfaces, 2021, 13(11), 12777.
[1] 李雪伍, 王红星, 郭伟玲, 邢志国, 黄艳斐, 王海斗. 红外抗反射微纳结构刻蚀制备研究进展[J]. 材料导报, 2024, 38(6): 22110062-10.
[2] 马超, 解帅, 王永超, 冀志江, 吴子豪, 王静. 用于红外和雷达波隐身的水泥基复合材料[J]. 材料导报, 2024, 38(5): 23080165-9.
[3] 刘玉慧, 柳仕林, 吴聪影, 吴琪琳. 基于碳材料的多维度柔性应变/压力传感器的研究进展[J]. 材料导报, 2024, 38(4): 22070258-9.
[4] 贺亦菲, 杨德仁, 皮孝东. 基于硅/二维层状材料异质结的红外光电探测器研究进展[J]. 材料导报, 2024, 38(1): 22030194-9.
[5] 周宇祥, 施天宇, 赵晨媛, 尹海宏, 宋长青, 郁可. 聚苯胺包覆的硫化锌-碳纳米管用作正极载体材料提高锂硫电池性能[J]. 材料导报, 2024, 38(1): 22060085-7.
[6] 杨强, 刘洪新, 何端鹏, 陈海峰, 陈维强, 金晶, 潘福明. 高导热沥青基碳纤维复合材料在航天器中的应用现状及展望[J]. 材料导报, 2024, 38(1): 22080244-8.
[7] 周文彩, 王伟, 刘晓鹏, 齐帅, 于浩, 曾红杰, 王川申, 魏晓俊. 透明太阳能电池的研究进展[J]. 材料导报, 2023, 37(8): 21060214-8.
[8] 温飞娟, 温奇飞, 龙樟, 蒲京辰, 邓荣. 基于超声红外热波技术的再制造零件裂纹检测研究现状[J]. 材料导报, 2023, 37(6): 21030195-8.
[9] 吕丹丹, 李慕荣, 张伟钢. 超疏水PDMS改性聚氨酯/黄铜复合涂层的制备及性能表征[J]. 材料导报, 2023, 37(4): 21060116-6.
[10] 满世甲, 杜雪岩, 申永前, 龙建. 镍渣衍生Fe3O4/聚苯胺复合材料的制备及微波吸收性能研究[J]. 材料导报, 2023, 37(22): 22030093-6.
[11] 孟真, 李广德, 崔光振, 王义, 刘东青, 程海峰. 基于超材料的红外/雷达兼容隐身材料研究进展[J]. 材料导报, 2023, 37(21): 22040001-8.
[12] 陈昊翔, 李伟华. 自感知发光涂层在腐蚀监测中的研究进展[J]. 材料导报, 2023, 37(2): 21050151-10.
[13] 潘权子, 刘文晓, 孟则达, 罗莉, 刘守清. 压电增强二硫化钼/氧化锌近红外光催化降解氨氮[J]. 材料导报, 2023, 37(19): 22030259-7.
[14] 师甜甜, 杜立飞, 张海锋, 田闰博. 水基吸波超材料的研究进展[J]. 材料导报, 2023, 37(18): 21120076-7.
[15] 王言磊, 陆军, 梁鹏飞, 罗婷, 颜川奇. 不同温拌剂对高黏沥青流变及微观特性影响研究[J]. 材料导报, 2023, 37(16): 22010171-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed