Please wait a minute...
材料导报  2024, Vol. 38 Issue (5): 22100005-7    https://doi.org/10.11896/cldb.22100005
  无机非金属及其复合材料 |
化学外加剂对粉煤灰湿法细化活化的影响
谭洪波1,*, 孔祥辉1, 贺行洋2, 李懋高1, 苏英2, 蹇守卫1, 杨进2
1 武汉理工大学硅酸盐建筑材料国家重点实验室,武汉 430070
2 湖北工业大学土木建筑与环境学院,武汉 430064
Effect of Chemical Additives on Wet Grinding and Activation of Fly Ash
TAN Hongbo1,*, KONG Xianghui1, HE Xingyang2, LI Maogao1, SU Ying2, JIAN Shouwei1, YANG Jin2
1 State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
2 School of Civil Engineering and Environmental Sciences, Hubei University of Technology, Wuhan 430064, China
下载:  全 文 ( PDF ) ( 35096KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 将粉煤灰(FA)作为矿物掺合料使用,是降低胶凝材料碳排放的重要手段之一,但其早期活性低是学者们普遍关注的问题。本研究提出在湿磨过程中引入化学功能组分来提升FA细化活化效率的技术思路;通过激光粒度仪(PSD)、pH仪、全谱直读等离子体发射光谱仪(ICP)、XRD、SEM和TG-DTG等测试手段评价了FA的物化性能及活性指数,揭示了液相研磨机械力和化学溶蚀协同作用机理。结果表明:引入TIPA、TEA、NaOH、Na2SO4及电石渣(CS)化学功能组分优化了湿磨的液相环境介质,可显著提升湿磨效率;当FA的中值粒径降低至2 μm时,TIPA+CS作用效果最为显著,研磨时间由原来的120 min缩短至40 min,缩短67%。从活性指数的角度来看,1 d龄期时,Na2SO4作用效果最为显著,湿磨FA的活性指数达到60.1%;3 d、7 d、28 d 龄期时,TIPA+CS作用效果较好,湿磨FA的活性指数分别可达到81.3%、89.1%、97%。在液相研磨机械力作用过程中,液相环境介质可溶蚀粉煤灰表面,促进表面[AlO4]和[SiO4]的解聚,加速离子溶出,形成钙矾石、C-S-H凝胶等水化产物,显著提升FA的湿磨细化活化效率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谭洪波
孔祥辉
贺行洋
李懋高
苏英
蹇守卫
杨进
关键词:  粉煤灰  湿法研磨  液相环境  掺合料  活性指数    
Abstract: Fly ash (FA), used as mineral admixture, is one of the important means to reduce carbon emission of cementitious materials, but its low early activity is a common concern. In this study, chemical functional components were introduced in wet grinding process to improve the efficiency of FA refinement and activation. The physicochemical property and activity index were evaluated by PSD, pH, ICP, XRD, SEM and TG-DTG, and the synergistic mechanism of liquid lapping mechanical force and chemical dissolution was revealed. The results show that the introduction of TIPA, TEA, NaOH, Na2SO4 and carbide slag (CS) chemical functional components and optimization of liquid environment medium could significantly improve the wet grinding efficiency. When the median particle size of FA was reduced to 2 μm, TIPA+CS had the most significant effect; the grinding time was reduced from 120 min to 40 min, with a decrease by 67%. At 1 day age, Na2SO4 showed the most significant effect, and the activity index of FA reached 60.1%; at 3 d, 7 d and 28 d, TIPA+CS had a good effect, and the activity index reached 81.3%, 89.1% and 97%, respectively. In the process of wet grinding process, liquid environment medium could corrode the surface of fly ash, promote the depolymerization of [AlO4] and [SiO4] on the surface, accelerate ion dissolution, form hydration products such as ettringite and C-S-H gel, and significantly improve the efficiency of refinement and activation.
Key words:  fly ash    wet grinding    the liquid phase environment    admixture    activity index
出版日期:  2024-03-10      发布日期:  2024-03-18
ZTFLH:  TU528  
基金资助: 湖北省重点研发计划项目(2021BAA060)
通讯作者:  *谭洪波,2009年在武汉理工大学获得工学博士学位,现任武汉理工大学硅酸盐建筑材料国家重点实验室研究员,主要从事绿色低碳建筑材料及固废资源化利用相关领域的研究。目前在国际知名期刊上发表SCI论文100余篇,获得国家发明授权专利50余项。 thbwhut@whut.edu.cn   
引用本文:    
谭洪波, 孔祥辉, 贺行洋, 李懋高, 苏英, 蹇守卫, 杨进. 化学外加剂对粉煤灰湿法细化活化的影响[J]. 材料导报, 2024, 38(5): 22100005-7.
TAN Hongbo, KONG Xianghui, HE Xingyang, LI Maogao, SU Ying, JIAN Shouwei, YANG Jin. Effect of Chemical Additives on Wet Grinding and Activation of Fly Ash. Materials Reports, 2024, 38(5): 22100005-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22100005  或          https://www.mater-rep.com/CN/Y2024/V38/I5/22100005
1 Luo F. Cement, 2022(1), 41(in Chinese).
罗帆. 水泥, 2022(1), 41.
2 Feng S X, Liu X T, Yang Y, et al. Guangdong Building Material, 2022, 38(1), 31(in Chinese).
丰曙霞, 刘晓彤, 杨阳, 等. 广东建材, 2022, 38(1), 31.
3 Wang P W. Low Carbon World, 2021, 11(11), 27 (in Chinese).
王沛祎. 低碳世界, 2021, 11(11), 27.
4 Li X. Shanxi Architecture, 2022, 48(2), 6 (in Chinese).
李溪. 山西建筑, 2022, 48(2), 6.
5 Hua C F, Wang W, Han G Y. Brick-Tile, 2022(3), 15 (in Chinese).
花春峰, 王巍, 韩桂英. 砖瓦, 2022(3), 15.
6 Su Y, Liu Y X, He X Y, et al. Bulletin of the Chinese Ceramic Society, 2019, 38(1), 265 (in Chinese).
苏英, 刘雨轩, 贺行洋, 等. 硅酸盐通报, 2019, 38(1), 265.
7 Zhou B C, Hu T. Environmental Engineering, 2019, 37(S1), 306 (in Chinese).
周保成, 胡途. 环境工程, 2019, 37(S1), 306.
8 Luo X. Shandong Chemical Industry, 2022, 51(1), 24 (in Chinese).
罗翔. 山东化工, 2022, 51(1), 24.
9 Yang Y L, Liao H Q, Duan S Y, et al. China Powder Science and Technology, 2022, 28(1), 52 (in Chinese).
杨烨霖, 廖洪强, 段思宇, 等. 中国粉体技术, 2022, 28(1), 52.
10 Tan H B, Nie K J, He X Y, et al. Construction and Building Materials, 2019, 206, 248.
11 Tan H B, Deng X F, He X Y, et al. Cement and Concrete Composites, 2019, 97, 387.
12 Tan H B, Li M G, He X Y, et al. Construction and Building Materials, DOI:10. 1016/j. conbuildmat. 2020. 120465.
13 Wang Y B, Li J W, He X Y, et al. Construction and Building Materials, DOI:10. 1016/j. conbuildmat. 2020. 118593.
14 Li G Y, Tan H B, Zhang J J, et al. Construction and Building Materials, DOI:10. 1016/j. conbuildmat. 2021. 123378.
15 Zhang J J, Tan H B, He X Y, et al. Journal of Cleaner Production, DOI:10. 1016/j. jclepro. 2020. 124632.
16 Liu X H, Ma B G, Tan H B, et al. Waste Manag, 2020, 113, 456.
17 Shi C J, Day R L. Cement and Concrete Research, 1995, 25(1), 15.
18 Lan M Z, Hou W F, Wang Y L. Cement, 2015(8), 95 (in Chinese).
兰明章, 侯伟芳, 王亚丽. 混凝土, 2015(8), 95.
19 Wang Y F, Tan H B, Gu X Y, et al. Journal of Building Engineering, DOI:10. 1016/j. jobe. 2021. 103401.
20 Yang J, Su Y, He X Y, et al. Fuel Processing Technology, 2018, 181, 75.
21 Li D X, Chen Y M, Shen J L. Journal of the Chinese Ceramic Society, 2000(6), 523 (in Chinese).
李东旭, 陈益民, 沈锦林. 硅酸盐学报, 2000(6), 523.
22 Lin X Q, Wang D M, Zhang T, et al. Fly Ash Comprehensive Utilization, 2013(1), 34(in Chinese).
蔺喜强, 王栋民, 张涛, 等. 粉煤灰综合利用, 2013(1), 34.
23 Ma B G, Xu Y H, Dong R Z. Journal of Building Materials, 2006(1), 6 (in Chinese).
马保国, 许永和, 董荣珍. 建筑材料学报, 2006(1), 6.
24 Fraay A L A, Bijen J M, De-Haan Y M. Cement Concrete Research, 1989, 19(2), 235.
25 Zhang C X, Jiang Y B, Huang S. Cement Guide for New Epoch, 2002(2), 21 (in Chinese).
张成祥, 蒋永波, 黄曙. 新世纪水泥导报, 2002(2), 21.
26 Zhang C X, Jiang Y B, Huang S. Cement Guide for New Epoch, 2002(1), 10 (in Chinese).
张成祥, 蒋永波, 黄曙. 新世纪水泥导报, 2002(1), 10.
[1] 罗树琼, 葛亚丽, 潘崇根, 袁盛, 杨雷. 微波活化粉煤灰的微观结构及粉煤灰-水泥浆体的早期性能[J]. 材料导报, 2024, 38(7): 22090256-6.
[2] 张鹏, 陈星月, 李素芹, 任志峰, 李怡宏, 赵爱春, 何奕波. 粉煤灰制备沸石的技术及应用现状[J]. 材料导报, 2024, 38(7): 22100063-14.
[3] 郑建岚, 王雅思, 陈僖, 张旺城. 含氯再生骨料混凝土中钢筋抗锈蚀性能试验研究[J]. 材料导报, 2024, 38(22): 23110219-7.
[4] 张洪智, 梁取平, 邵明扬, 姜能栋, 杨梦宇, 隋高阳, 葛智. 磨细循环流化床粉煤灰对泡沫轻质土力学性能和孔结构的影响[J]. 材料导报, 2024, 38(22): 24020041-7.
[5] 董必钦, 张枭, 刘源涛, 何晓伟, 王琰帅. 硫酸铝对高掺量流化床粉煤灰基泡沫混凝土性能的影响[J]. 材料导报, 2024, 38(20): 23090133-8.
[6] 田小平, 王长龙, HidayatiAsrah, Lim Chung Han, 平浩岩, 齐洋, 马锦涛, 荆牮霖, 刘治兵, 郑永超, 翟玉新, 刘枫. 钒钛铁尾矿制备绿色建筑材料的研究进展[J]. 材料导报, 2024, 38(19): 23070040-10.
[7] 郑建岚, 王晓敏, 张建全. 含氯再生骨料混凝土抗氯离子渗透性能的研究[J]. 材料导报, 2024, 38(18): 23050208-6.
[8] 冯虎, 闵智爽, 郭奥飞, 朱必洋, 陈兵, 黄昊. 超高韧性磷酸镁水泥基复合材料压缩力学性能研究[J]. 材料导报, 2024, 38(17): 23090058-12.
[9] 孟祥瑞, 刘源涛, 陈兵, 王立艳. 粉煤灰在磷酸镁水泥体系中的作用机制研究[J]. 材料导报, 2024, 38(17): 24010084-7.
[10] 关虓, 龙行, 丁莎, 张鹏鑫. 煤矸石粉混凝土冻融损伤模型与劣化机制[J]. 材料导报, 2024, 38(16): 22080144-9.
[11] 吴浪, 鲍蓉, 戴健, 雷斌. 石灰石-煅烧黏土-水泥(LC3)体系的水化动力学模型[J]. 材料导报, 2024, 38(15): 23020253-6.
[12] 张洪磊, 曹明莉. 机械粉磨对黄河泥沙颗粒群特性及胶凝活性的影响[J]. 材料导报, 2024, 38(13): 22090257-6.
[13] 袁小亚, 蒲云东, 桂尊曜, 张惠一, 杨森, 金湛, 曹蔚琦. 羟基化石墨烯对粉煤灰-水泥基复合材料性能的影响[J]. 材料导报, 2024, 38(11): 23020017-8.
[14] 倪彤元, 杜鑫, 莫云波, 黄森乐, 杨杨, 刘金涛. 基于ANN的HVFAC拉伸性能预测评价[J]. 材料导报, 2024, 38(10): 23070117-9.
[15] 沈燕, 朱航宇, 龚泳帆, 何强. 碱对硫铝酸盐水泥-粉煤灰体系水化硬化的影响[J]. 材料导报, 2023, 37(S1): 23050143-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed