Please wait a minute...
材料导报  2024, Vol. 38 Issue (17): 24010084-7    https://doi.org/10.11896/cldb.24010084
  新型高性能磷酸镁胶凝材料 |
粉煤灰在磷酸镁水泥体系中的作用机制研究
孟祥瑞1,2, 刘源涛1,2, 陈兵1,2,*, 王立艳3,*
1 上海交通大学海洋工程全国重点实验室,上海 200240
2 上海交通大学上海市公共建筑和基础设施数字化运维重点实验室, 上海 200240
3 吉林建筑大学材料科学与工程学院,长春 130118
Study on the Mechanism of Fly Ash in Magnesium Phosphate Cement
MENG Xiangrui1,2, LIU Yuantao1,2, CHEN Bing1,2,*, WANG Liyan3,*
1 State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2 Shanghai Key Laboratory for Digital Maintenance of Buildings and Infrastructure, Shanghai Jiao Tong University, Shanghai 200240, China
3 School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, China
下载:  全 文 ( PDF ) ( 39972KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作采用粉煤灰(Fly ash,FA)替代一部分(≤30%)氧化镁对磷酸镁水泥(MPC)砂浆进行改性,研究了粉煤灰在MPC体系中的活性和作用机制,分析了FA对MPC物理力学性能和微观结构的影响。结果显示,FA在MPC体系中体现了复杂的物理和化学效应。球形粉煤灰颗粒具有滚动轴承的功能,优化了MPC的流动性;FA不仅填充了MPC的微孔隙、微裂缝,还体现了“晶核效应”,为MPC水化提供了成核位点,促进水化产物鸟粪石(MgNH4PO4·6H2O)的生成,使MPC的微观结构变得致密,从而提高了MPC的力学性能。此外,在水化热激活下,FA中的Al2O3会参与反应,生成少量磷酸铝相无定型凝胶。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孟祥瑞
刘源涛
陈兵
王立艳
关键词:  磷酸镁水泥  粉煤灰  作用机制  工作性  力学性能    
Abstract: Fly ash (FA) was applied to modify magnesium phosphate cement (MPC) mortar by replacing a portion (≤30%) of magnesium oxide, and the reactivity and reaction mechanism of fly ash in the MPC system were investigated, the effect of FA on the physico-mechanical properties and microstructure of MPC was analyzed. The results showed that FA embodied complex physical and chemical effects in the MPC system. The spherical fly ash particles have the function of rolling bearings, which optimizes the fluidity of MPC; FA not only fills the micropores and microcracks of MPC, but also exhibits the ‘nucleating effect', which provides nucleation sites for the hydration of MPC, promotes the generation of the hydration product-struvite (MgNH4PO4·6H2O), densifies the microstructure and improves the mechanical properties of MPC. In addition, after the activation of hydration heat, Al2O3 from FA would participate in the reaction and generate amorphous aluminum phosphate gels.
Key words:  magnesium phosphate cement    fly ash    reaction mechanism    workability    mechanical property
出版日期:  2024-09-10      发布日期:  2024-09-30
ZTFLH:  TQ172  
基金资助: 国家自然科学基金(52278265);吉林省科技发展计划项目(20220203080SF)
通讯作者:  *陈兵,上海交通大学长聘教授、博士研究生导师。2002年同济大学材料学专业博士毕业后到上海交通大学工作至今。目前主要从事新型水泥基复合材料方面的研究工作。发表论文200余篇,包括Cement and Concrete Research、Cement and Concrete Composites、Composites Part B、Construction and Building Materials等,自2019年以来,连续入选爱思唯尔中国大陆土木与结构工程学科高被引学者。hntchen@sjtu.edu.cn;
王立艳,吉林建筑大学教授、硕士研究生导师。2001年获长春工业大学硕士学位,并到吉林建筑大学工作,2009年获吉林大学高分子化学与物理专业博士学位。目前从事磷酸镁水泥复合材料和光催化材料的研究。近年来,在Construction and Building Materials、Journal of Building Engineering、Journal of Materials Chemistry A、Journal of Power Sources、RSC Advances、Materials Science in Semiconductor Processing等国际刊物上发表SCI论文20篇。wlynzy@163.com   
作者简介:  孟祥瑞,2019年6月、2022年1月分别于北京林业大学和天津大学获得工学学士学位和硕士学位。现为上海交通大学船舶海洋与建筑工程学院博士研究生,在陈兵教授的指导下进行研究。主要研究领域为特种水泥基材料与工程结构。
引用本文:    
孟祥瑞, 刘源涛, 陈兵, 王立艳. 粉煤灰在磷酸镁水泥体系中的作用机制研究[J]. 材料导报, 2024, 38(17): 24010084-7.
MENG Xiangrui, LIU Yuantao, CHEN Bing, WANG Liyan. Study on the Mechanism of Fly Ash in Magnesium Phosphate Cement. Materials Reports, 2024, 38(17): 24010084-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.24010084  或          http://www.mater-rep.com/CN/Y2024/V38/I17/24010084
1 Meng X R, Jiang Y, Chen B, et al. Construction and Building Materials, 2023, 408, 133612.
2 Haque M A, Chen B. Construction and Building Materials, 2019, 211, 885.
3 Ahmad M R, Chen B, Jiang Y. Composites Part B:Engineering, 2019, 168, 204.
4 Chen X, Liu W, Cui A Q, et al. Materials Reports, 2024, 38(17),23120019 (in Chinese).
陈歆, 刘文, 崔安琪, 等. 材料导报, 2024, 38(17),23120019.
5 Liu Y T, Chen B. Construction and Building Materials, 2019, 214, 516.
6 Xu B W, Lothenbach B, Ma H Y. Cement and Concrete Composites, 2018, 90, 169.
7 Wagh A S. Chemically bonded phosphate ceramics:twenty-first century materials with diverse applications, Second edition, Elsevier Press, Netherlands, 2016.
8 Qiao F, Chau C K, Li Z. Construction and Building Materials, 2010, 24(5), 695.
9 Gardner L J, Bernal S A, Walling S A, et al. Cement and Concrete Research, 2015, 74, 78.
10 Xu B W, Ma H Y, Shao H Y, et al. Cement and Concrete Research, 2017, 99, 86.
11 Liu Y T, Chen B, Dong B Q, et al. Construction and Building Materials, 2022, 314, 125581.
12 Tansel B, Lunn G, Monje O. Chemosphere, 2018, 194, 504.
13 Qin Z H, Zhou S B, Ma C, et al. Construction and Building Materials, 2019, 227, 116675.
[1] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[2] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[3] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[4] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[5] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[6] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[7] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[8] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[9] 罗树琼, 葛亚丽, 潘崇根, 袁盛, 杨雷. 微波活化粉煤灰的微观结构及粉煤灰-水泥浆体的早期性能[J]. 材料导报, 2024, 38(7): 22090256-6.
[10] 张鹏, 陈星月, 李素芹, 任志峰, 李怡宏, 赵爱春, 何奕波. 粉煤灰制备沸石的技术及应用现状[J]. 材料导报, 2024, 38(7): 22100063-14.
[11] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[12] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[13] 杨佳琛, 江海涛, 田世伟, 陈飞达. 基于电子结构理论的微合金Q355B热轧钢力学性能预测[J]. 材料导报, 2024, 38(7): 22090319-5.
[14] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[15] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed