Please wait a minute...
材料导报  2024, Vol. 38 Issue (17): 24010085-7    https://doi.org/10.11896/cldb.24010085
  新型高性能磷酸镁胶凝材料 |
Mg(OH)2对磷酸镁水泥水化过程及性能的影响
陈嘉伟1, 张芸侨1, 陈卓凡1, 刘智1, 李军1, 卢忠远1, 赖振宇1,2,*
1 西南科技大学材料科学与工程学院,环境友好能源材料国家重点实验室,四川 绵阳 621010
2 四川工程职业技术大学建筑工程系,四川 德阳 618030
Influence of Mg(OH)2 on the Hydration Process and Properties of Magnesium Phosphate Cement
CHEN Jiawei1, ZHANG Yunqiao1, CHEN Zhuofan1, LIU Zhi1, LI Jun1, LU Zhongyuan1, LAI Zhenyu1,2,*
1 State Key Laboratory of Environmental-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
2 Department of Architecture Engineering, Sichuan Polytechnic University, Deyang 618030, Sichuan, China
下载:  全 文 ( PDF ) ( 17516KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 磷酸镁水泥(MPC)的镁质原料主要为重烧MgO,由于制备重烧MgO需要高温煅烧,其使用成本和碳排放量过高。氢氧化镁(Mg(OH)2)的来源丰富,制取成本低廉且无污染、安全环保,如能大量采用对缓解使用成本和碳排放量过高这一问题具有重要意义。因此,本工作使用Mg(OH)2代替部分重烧MgO,通过X射线衍射、热分析、扫描电镜和能谱分析等测试手段,研究其对MPC工作性能、水化过程、强度发展和微观结构的影响。结果表明,Mg(OH)2的掺入加快了MPC的水化过程,浆体的流动度降低,凝结时间缩短,本工作通过水玻璃热处理改性等缓凝手段改善其工作性能。随着Mg(OH)2的掺入,磷酸镁水泥的水化温度和pH值显著降低,水化28 d后的K-鸟粪石(K-struvite)结晶数量增多,抗压强度随Mg(OH)2含量的增加而降低,当Mg(OH)2掺量在50%以内时,其后期强度下降在15%的范围内,随Mg(OH)2掺量增大,更多的水化产物是由Mg(OH)2反应形成的,当Mg(OH)2掺量为66.6%时,重烧MgO的反应率由平均值22%降低至7%。总而言之,采用大掺量Mg(OH)2制备磷酸镁水泥具有可行性且能确保材料的后期力学性能满足工程应用的要求,对降低磷酸镁水泥使用成本和碳排放具有潜在的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈嘉伟
张芸侨
陈卓凡
刘智
李军
卢忠远
赖振宇
关键词:  Mg(OH)2  磷酸镁水泥  水化过程  工作性能    
Abstract: The magnesium raw material for magnesium phosphate cement (MPC) is mainly dead-burned MgO. However, the high-temperature calcination required for producing dead-burned MgO results in high costs and excessive carbon emissions. magnesium hydroxide (Mg(OH)2) is abundant, has low production costs, and is environmentally safe and pollution-free. Mg(OH)2 is a rich source of low-cost, non-polluting, safe and environmentally friendly, which is of great significance to alleviate the problem of high cost of use and carbon emissions if it can be adopted in large quantities. Therefore, in this work, Mg(OH)2 was used instead of partially dead-burned MgO, by means of tests such as X-ray diffraction, thermal analysis, scanning electron microscopy and energy spectrum analysis, the effects on workability, hydration process, strength development and microstructure were investigated. The results showed that the incorporation of Mg(OH)2 accelerated the hydration process of MPC, the fluidity of the slurry was reduced and the setting time was shortened. In this paper, the working properties are improved by retardation means such as water glass heat treatment modification. The hydration temperature and pH of magnesium phosphate cement decreased significantly with the incorporation of Mg(OH)2, increased number of K-struvite crystals in the later 28 d, compressive strength decreases with increasing Mg(OH)2 content. When Mg(OH)2 is doped within 50%, its late strength decreases in the range of 15%, with the increase of Mg(OH)2 doping, more hydration products are formed by the reaction of Mg(OH)2. When Mg(OH)2 doping accounted for 66.6%, the reactivity of dead-burned MgO was reduced from an average value of 22% to 7%. In conclusion, the preparation of magnesium phosphate cement with large amount of Mg(OH)2 is feasible and can ensure that the later mechanical properties of the material can meet the requirements of engineering applications. It has potential applications for reducing the cost of magnesium phosphate cement use and carbon emissions.
Key words:  Mg(OH)2    magnesium phosphate cement    hydration process    working performances
出版日期:  2024-09-10      发布日期:  2024-09-30
ZTFLH:  TU528.31  
基金资助: 四川省应用基础研究(2020YJ0355)
通讯作者:  *赖振宇,四川工程职业技术学院教授。1992年华东理工大学无机材料系无机非金属材料本科毕业,2006年西南科技大学材料科学与工程学院材料学业硕士毕业,2012年重庆大学材料科学与工程专业博士毕业,1996—2023年先后在西南科技大学材料科学与工程学院和环境友好能源材料国家重点实验室工作,目前在四川工程职业技术学院工作。主要从事新型胶凝材料、固体废物资源化利用方面的研究工作。发表论文80余篇,包括Cement and Concrete Research、Construction and Building Materials、Ceramics International、Science of the Total Environment、Nanoscale Research Letters、Journal Wuhan University of Technology、Materials Science Edition、《硅酸盐学报》《功能材料》《环境科学学报》等。获得中国建筑材料联合会建筑材料科学技术奖二等奖1项。laizhenyu@swust.edu.cn   
作者简介:  陈嘉伟,2019年6月于洛阳理工学院获得工学学士学位。现为西南科技大学材料与化学学院硕士研究生,在赖振宇教授的指导下进行研究,目前主要研究领域为磷酸镁水泥基础研究及其应用。
引用本文:    
陈嘉伟, 张芸侨, 陈卓凡, 刘智, 李军, 卢忠远, 赖振宇. Mg(OH)2对磷酸镁水泥水化过程及性能的影响[J]. 材料导报, 2024, 38(17): 24010085-7.
CHEN Jiawei, ZHANG Yunqiao, CHEN Zhuofan, LIU Zhi, LI Jun, LU Zhongyuan, LAI Zhenyu. Influence of Mg(OH)2 on the Hydration Process and Properties of Magnesium Phosphate Cement. Materials Reports, 2024, 38(17): 24010085-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.24010085  或          http://www.mater-rep.com/CN/Y2024/V38/I17/24010085
1 Feng L, Chen X Q, Wen X D, et al. Construction and Building Materials, 2019, 204, 550.
2 Park J W, Kim K H, Ann K Y. Advances in Materials Science and Engineering, 2016, 2016, 1.
3 Deng H W, Yang Y Z, Gao X J. Advanced Materials Research, 2011, 250-253, 1752.
4 Yang Y Q, Zhang B. Low Temperature Architecture Technology, 2022, 44(4), 12 (in Chinese)
杨元全, 张冰. 低温建筑技术, 2022, 44(4), 12.
5 Qin J H, Qian J S, Song Q, et al. Journal of the Chinese Ceramic Society, 2022, 50(6), 1592(in Chinese).
秦继辉, 钱觉时, 宋庆, 等. 硅酸盐学报, 2022, 50(6), 1592.
6 Wu X N. Jiangxi Building Materials, 2022(9), 249(in Chinese).
吴晓宁. 江西建材, 2022(9), 249.
7 Liu J X, Yan Y M, Hai R, et al. Advances in Science and Technology of Water Resources, 2023, 43(3), 94(in Chinese).
刘俊霞, 燕依梦, 海然, 等. 水利水电科技进展, 2023, 43(3), 94.
8 Liu J, Guo R H, Zhang Z Q. Materials Reports, 2021, 35(23), 23068(in Chinese).
刘进, 呙润华, 张增起. 材料导报, 2021, 35(23), 23068.
9 Du J G, Wang X F, Chen B, et al. Construction Technology, 2022, 51(15), 6(in Chinese).
杜杰贵, 王雄锋, 陈波, 等. 施工技术(中英文), 2022, 51(15), 6
10 Su C L. Engineering Construction, 2020, 52(4), 70(in Chinese).
苏春雷. 工程建设, 2020, 52(4), 70.
11 Yang N, Shi C, Yang J, et al. Journal of Materials in Civil Engineering, 2014, 26(10), 04014071.
12 Shen W, Cao L, Li Q, et al. Renewable and Sustainable Energy Reviews, 2015, 50, 1004.
13 Shen W, Cao L, Li Q, et al. Journal of Cleaner Production, 2016, 131, 20.
14 Mestres G, Ginebra M P. Acta Biomaterialia, 2011, 7(4), 1853.
15 Li J, Zhang W, Cao Y. Construction and Building Materials, 2014, 58, 122.
16 Formosa J, Lacasta A M, Navarro A, et al. Construction and Building Materials, 2015, 91, 150.
17 Haque M A, Chen B. Construction and Building Materials, 2019, 211, 885.
18 Jin F, Al-Tabbaa A. Cement and Concrete Composites, 2014, 52, 27.
19 Ma H, Xu B, Li Z. Cement and Concrete Research, 2014, 65, 96.
20 Xiao R, Lai Z, Luo X, et al. Journal of Building Engineering, 2022, 60, 105216.
21 Qiao F, Chau C K, Li Z. Construction and Building Materials, 2010, 24(5), 695.
22 Fan S, Chen B. Construction and Building Materials, 2014, 65, 480.
23 Liu Z, Lai Z, Luo X, et al. Construction and Building Materials, 2023, 393, 132057.
24 Jiang Y, Ahmad M R, Chen B. Construction and Building Materials, 2019, 195, 140.
25 Xu B, Lothenbach B, Winnefeld F. Cement and Concrete Research, 2020, 131, 106012.
26 Xu X, Lin X, Pan X, et al. Construction and Building Materials, 2020, 235, 117544.
27 Feng H, Nie S, Guo A, et al. Construction and Building Materials, 2022, 341, 127843.
28 Walling S A, Provis J L. Chemical Reviews, 2016, 116(7), 4170.
29 Feng H, Liang J, Pang Y, et al. Construction and Building Materials, 2022, 333, 127395.
30 Zhao S X, Yan H, Li Y T, et al. Bulletin of the Chinese Ceramic Society, 2017, 36(10), 3303(in Chinese).
赵思勰, 晏华, 李云涛, 等. 硅酸盐通报, 2017, 36(10), 3303.
31 Tan Y, Yu H, Li Y, et al. Construction and Building Materials, 2016, 126, 313.
32 Lu K, Wang B, Han Z, et al. Journal of Building Engineering, 2022, 51, 104137.
33 Lu X, Chen B. Construction and Building Materials, 2016, 123, 719.
34 Vance K, Kumar A, Sant G, et al. Cement and Concrete Research, 2013, 52, 196.
35 Al Menhosh A, Wang Y, Wang Y. Journal of Engineering, 2016, 2016, 1.
36 Liu Z, Lai Z, Luo X, et al. Construction and Building Materials, 2022, 343, 128132.
37 Wang H T, Zhang S H, Ding J H, et al. Journal of Functional Materials, 2016, 47(6), 6158(in Chinese).
汪宏涛, 张时豪, 丁建华, 等. 功能材料, 2016, 47(6), 6158.
38 Ding J H, Wang H T, Zhang S H, et al. New Building Materials, 2016, 43(4), 32(in Chinese).
丁建华, 汪宏涛, 张时豪, 等. 新型建筑材料, 2016, 43(4), 32.
39 Ding J H, Wang H T, Zhang S H, et al. Journal of Logistical Engineering University, 2016, 32(1), 74(in Chinese).
丁建华, 汪宏涛, 张时豪, 等. 后勤工程学院学报, 2016, 32(1), 74.
40 Pang B, Liu J, Wang B, et al. Construction and Building Materials, 2021, 275, 121741.
41 Meng X, Jiang Y, Chen B, et al. Construction and Building Materials, 2023, 408, 133612.
42 Guo R X. Sulphur Phosphorus & Bulk Materials Handling Related Engineering, 2013(2), 14(in Chinese).
郭如新. 硫磷设计与粉体工程, 2013(2), 14.
43 Guo R X. Journal of Salt Science and Chemical Industry, 2009, 38(4), 49(in Chinese).
郭如新. 盐业与化工, 2009, 38(4), 49.
44 Yang Z H, Wang C L. Concrete, 2022(10), 188(in Chinese).
杨圳华, 王超林. 混凝土, 2022(10), 188.
45 Zhang H, Wang H, Wang H. IOP Conference Series:Earth and Environmental Science, 2018, 170, 032028.
46 Liu H, Wu H, Song Q, et al. Journal of Thermal Analysis and Calorimetry, 2019, 141(4), 1341.
47 Zhang T, Li T, Zhou Z, et al. Composites Part B:Engineering, 2020, 198, 108203.
48 Guan Y, Chang J, Hu Z, et al. Construction and Building Materials, 2022, 348, 128669.
49 Du Z, Unluer C. Cement and Concrete Research, 2024, 177, 107418.
50 Chen M M, Sun Y Z, Song X F, et al. Journal of East China University of Science and Technology, 2022, 48(5), 600(in Chinese).
陈闵敏, 孙玉柱, 宋兴福, 等. 华东理工大学学报(自然科学版), 2022, 48(5), 600.
51 Liu M, Lai Z, Deng Q, et al. Construction and Building Materials, 2022, 316, 125880.
52 Shi C, Yang J, Yang N, et al. Cement and Concrete Composites, 2014, 53, 83.
53 Feng H, Zhao X, Chen G, et al. Materials, 2019, 12(22), 3755.
54 Lai Z, Lai X, Shi J, et al. Construction and Building Materials, 2016, 129, 70.
55 He X, Lai Z, Yan T, et al. Construction and Building Materials, 2019, 225, 234.
[1] 吕炎, 白二雷, 王志航, 夏伟. 低温养护对环氧树脂基砂浆早期性能的影响及机理[J]. 材料导报, 2024, 38(5): 23080222-6.
[2] 刘雄飞, 王楠, 郝逸飞, 李辉. 磷酸镁水泥基帆布力学与微观性能研究[J]. 材料导报, 2024, 38(17): 23090003-6.
[3] 冯虎, 闵智爽, 郭奥飞, 朱必洋, 陈兵, 黄昊. 超高韧性磷酸镁水泥基复合材料压缩力学性能研究[J]. 材料导报, 2024, 38(17): 23090058-12.
[4] 陈歆, 刘文, 崔安琪, 郑海涛, 黄馨, 杨文萃, 葛勇. 高海拔地区低温成型磷酸镁水泥砂浆力学与抗冻性能[J]. 材料导报, 2024, 38(17): 23120019-9.
[5] 李悦, 龙世儒, 王子赓, 王楠. 磷镁物质的量比对天然水镁石制备的磷酸镁水泥性能的影响[J]. 材料导报, 2024, 38(17): 23120159-6.
[6] 李晓, 赵莹莹, 故丽孜巴·阿不都热西提, 贾兴文, 钱觉时. 磷酸镁水泥高温性能研究进展[J]. 材料导报, 2024, 38(17): 23120217-8.
[7] 孟祥瑞, 刘源涛, 陈兵, 王立艳. 粉煤灰在磷酸镁水泥体系中的作用机制研究[J]. 材料导报, 2024, 38(17): 24010084-7.
[8] 范旭涵, 王炳楠, 汤世豪, 辛星, 裴妍. 磷酸镁水泥加固低液限粉土的pH和电导率响应与孔隙特征研究[J]. 材料导报, 2024, 38(16): 23080046-9.
[9] 李北星, 陈鹏博, 殷实, 易浩. 附加用水量对再生砂混凝土工作性和力学性能的影响[J]. 材料导报, 2024, 38(1): 22070217-7.
[10] 董金美, 文静, 郑卫新, 贾利蕊, 常成功, 肖学英. 盐湖镁渣的热处理工艺及其对磷酸镁水泥性能的影响[J]. 材料导报, 2023, 37(23): 22040072-7.
[11] 马昆林, 刘建, 申景涛, 胡明文, 王晓杰, 龙广成, 曾晓辉. 砖混再生粗骨料及其在混凝土中的研究与应用进展[J]. 材料导报, 2023, 37(18): 22010215-12.
[12] 丁聪, 任金明, 王永明, 李新宇, 俞兵, 郭丽萍. 高延性水泥基复合材料用短切PVA纤维的长度优选研究[J]. 材料导报, 2023, 37(13): 21080025-8.
[13] 杨正宏, 刘思佳, 吴凯, 于龙, 潘峰. 纤维增强磷酸镁水泥基复合材料研究进展[J]. 材料导报, 2023, 37(1): 20110150-7.
[14] 周港明, 杭美艳, 路兰, 王浩, 蒋明辉. 风积沙3D打印砂浆材料参数与各向异性研究[J]. 材料导报, 2022, 36(9): 21020081-5.
[15] 韦宇, 周新涛, 黄静, 罗中秋, 马越, 母维宏, 刘钦, 雒云龙. 缓凝剂对磷酸镁水泥性能及其水化机制影响研究进展[J]. 材料导报, 2022, 36(4): 20050027-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed