Please wait a minute...
材料导报  2024, Vol. 38 Issue (1): 22070217-7    https://doi.org/10.11896/cldb.22070217
  无机非金属及其复合材料 |
附加用水量对再生砂混凝土工作性和力学性能的影响
李北星*, 陈鹏博, 殷实, 易浩
武汉理工大学硅酸盐建筑材料国家重点实验室,武汉 430070
Effect of Additional Water Amount on the Workability and Mechanical Properties of Concrete with Recycled Fine Aggregates
LI Beixing*, CHEN Pengbo, YIN Shi, YI Hao
State Key Laboratory of Silicate Materials for Architecture, Wuhan University of Technology, Wuhan 430070, China
下载:  全 文 ( PDF ) ( 6515KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 再生砂掺量和附加用水量对新拌和硬化再生砂混凝土的性能有重要影响。本工作制备了再生砂掺量(γRFA)为30%、50%、70%、100%(质量分数,下同),附加用水量补偿系数(kwa)为0.6、0.75、0.9、1.0的16组再生砂混凝土,测试了这些再生砂混凝土的工作性(坍落度、扩展度与扩展时间)与力学性能(抗压、劈拉强度与弹性模量),分析了kwa和γRFA对再生砂混凝土性能的影响规律,获得了kwa的合理取值范围。结果表明,随着kwa的降低,再生砂混凝土的工作性下降,力学性能增大;γRFA对混凝土力学性能的影响与附加用水量有关,在中低附加用水量(kwa=0.6、0.75)条件下,随着γRFA的增加,再生砂混凝土的部分力学性能指标增大且其值高于天然砂混凝土,而在高附加用水量(kwa=0.9、1.0)下,再生砂混凝土的力学性能随着γRFA的增加呈线性降低。γRFA低于50%对再生砂混凝土力学性能的影响较小,kwa值在0.75~0.9范围变化对再生砂混凝土工作性能与力学性能的影响均相对较小。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李北星
陈鹏博
殷实
易浩
关键词:  再生混凝土  再生砂  附加用水量  工作性能  力学性能    
Abstract: The replacement ratio of recycled fine aggregate (RFA) and amount of additional water have significant impact on the performance of both fresh and hardened recycled concrete. 16 groups of concrete specimens were prepared with different RFA replacement ratios (γRFA) of 30%, 50%, 70%, and 100% and compensation factors of additional water consumption (kwa) of 0.6, 0.75, 0.9, and 1.0, and the workability (slump, slump flow and flow time) and mechanical properties (compressive strength, flexural strength and modulus of elasticity) of these RFA concretes were tested. According to the test results, the influence law of the above kwaand γRFA parameters on the properties of the RFA concretes was discussed, and a reasonable kwa values range was obtained. The results show that the workability of RFA concrete decreases and the mechanical properties increase as kwa decreases;the influence of γRFAon the mechanical properties of the RFA concrete are related to the additional water consumption. Under the conditions of low and medium additional water consumption (kwa=0.6, 0.75), some mechanical properties of RFA concrete increase with the increase of γRFAand their values are higher than those of natural sand concrete. Under the conditions of high additional water consumption (kwa=0.9, 1.0), the mechanical properties of RFA concrete decrease linearly with the increase of γRFA. The γRFA less than 50% has little effect on the mechanical properties of RFA concrete, and the workability and mechanical properties of RFA concrete are little affected by the variation of γRFA value ranged from 0.75 to 0.9.
Key words:  recycled concrete    recycled fine aggregate    amount of additional water    workability    mechanical property
发布日期:  2024-01-16
ZTFLH:  TU528.01  
基金资助: 国家重点研发计划课题(2020YFC1909904)
通讯作者:  李北星,武汉理工大学硅酸盐建筑材料国家重点实验室教授、博士研究生导师。1992年7月、1995年6月、1998年7月于武汉工业大学硅酸盐工程、无机非金属材料和材料学专业先后获得工学学士、硕士和博士学位。目前主要研究领域为水泥混凝土材料、固废资源化利用和道桥工程材料。发表学术论文260余篇(其中SCI、EI和ISTP三大检索论文100余篇),出版专著2部、教材2部,获授权国家发明专利13件。libx0212@126.com   
引用本文:    
李北星, 陈鹏博, 殷实, 易浩. 附加用水量对再生砂混凝土工作性和力学性能的影响[J]. 材料导报, 2024, 38(1): 22070217-7.
LI Beixing, CHEN Pengbo, YIN Shi, YI Hao. Effect of Additional Water Amount on the Workability and Mechanical Properties of Concrete with Recycled Fine Aggregates. Materials Reports, 2024, 38(1): 22070217-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22070217  或          http://www.mater-rep.com/CN/Y2024/V38/I1/22070217
1 Silva R V, De Brito J, Dhir R K. Construction and Building Materials, 2014, 65, 201.
2 De Juan M S, Gutiérrez P A. Construction and Building Materials, 2009, 23(2), 872.
3 Evangelista L, De Brito J. European Journal of Environmental and Civil Engineering, 2014, 18(2), 129.
4 Sosa M E, Villagran Z Y, Zega C J. Construction and Building Mate-rials, 2021, 313, 1.
5 Yaprak H, Aruntas H Y, Demir I, et al. International Journal of Physical sciences, 2011, 6(10), 2455.
6 Cartuxo F, De Brito J, Evangelista L, et al. Construction and Building Materials, 2015, 89, 36.
7 Corinaldesi V, Moriconi G. Construction and Building Materials, 2009, 23(1), 289.
8 Leite M B, do Filho F, Lima P R L. Materials and Structures, 2013, 46(10), 1765.
9 Li Z, Liu J P, Xiao J Z, et al. Construction and Building Materials, 2019, 197, 30.
10 De Andrade G P, De Castro P G, Pepe M, et al. Construction and Building Materials, 2020, 252, 119091
11 Ferreira L, De Brito J, Barra M. Magazine of Concrete Research, 2011, 63(8), 617.
12 De Oliveira M B, Vazquez E. Waste Management, 1996, 16 (1-3), 113.
13 Poon C S, Shui Z H, Lam L, et al. Cement and Concrete Research, 2004, 34(1), 31.
14 Kou S C, Poon C S. Cement and Concrete Composites, 2009, 31(9), 622.
15 Pereira P, Evangelista L, De Brito J. Construction and Building Mate-rials, 2012, 28(1), 722.
16 Behera M, Minocha A K, Bhattacharyya S K. Construction and Building Materials, 2019, 228, 116819. 1.
17 Department of Housing and Urban Rural Development of Shaanxi Provincial. Technical specification for recycled aggregate pumping concrete, DBJ 61/T155-2019 (in Chinese).
陕西省住房和城乡建设厅. 再生骨料泵送混凝土应用技术规程, DBJ 61/T155-2019.
18 Tam V W Y, Gao X F, Tam C M. Cement and Concrete Research, 2005, 35(6), 1195.
19 Fan C C, Huang R, Hwang H, et al. Construction and Building Mate-rials, 2016, 112, 708.
20 Yang K H, Chung H S, Ashour A F. ACI Materials Journal, 2008, 105(3), 289.
21 Poon C S, Shui Z H, Lam L, et al. Cement and Concrete Research, 2004, 34(1), 31.
22 Ajdukiewicz A, Kliszczewicz A. Cement and Concrete Composites, 2002, 24(2), 269.
23 Evangelista L, De Brito J. Cement and Concrete Composites, 2007, 29(5), 397.
24 Pedro D, De Brito J, Evangelista L. Construction and Building Mate-rials, 2017, 154, 294.
25 Nie L W, Han G Y, Teng Y C. Concrete, 2017(11), 118 (in Chinese).
聂立武, 韩古月, 滕毓晨. 混凝土, 2017(11), 118.
26 Hafez H, Kurda R, Kurda R, et al. Applied Sciences, 2020, 10(3), 1018.
27 Cabral A E B, Schalch V, Dal Molin D C C, et al. Construction and Building Materials, 2010, 24(4), 421.
28 Gupta A, Mandal S, Ghosh S. International Journal of Civil & Structural Engineering, 2011, 2(1), 292.
29 Hassanean Y A, Rashwan M M, Assaf K A, et al. Journal of Enginee-ring Sciences, 2014, 42(1), 50.
30 Quattrone M, Cazacliu B, Angulo S C, et al. Construction and Building Materials, 2016, 123, 690.
31 Yacoub A, Djerbi A, Fen-Chong T. Construction and Building Materials, 2018, 158, 464.
32 Belin P, Habert G, Thiery M, et al. Materials and Structures, 2014, 47(9), 1451.
[1] 王家滨, 范一杰, 牛荻涛, 王宇, 张凯峰. 部分浸泡再生混凝土Mg2+-SO42--Cl-复合盐侵蚀耐久性损伤特征与机制[J]. 材料导报, 2024, 38(1): 22060026-13.
[2] 王述红, 贡藩, 尹宏, 修占国. 聚酯纤维泡沫混凝土力学性能及孔结构研究[J]. 材料导报, 2024, 38(1): 22060231-8.
[3] 冯振宇, 张宏宇, 马佳威, 陈琨, 周良道, 沈培良, 陈向明. 晶体塑性有限元方法在增材制造金属材料力学性能研究中的应用[J]. 材料导报, 2024, 38(1): 22070235-10.
[4] 刘亚豪, 王源升, 杨雪, 黄威, 李科, 王轩. 自修复聚氨酯材料的研究进展[J]. 材料导报, 2024, 38(1): 22050280-10.
[5] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[6] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[7] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[8] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[9] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[10] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[11] 刘勇, 刘哲, 高广志, 李志勇, 马凤森. 基于纳米材料的微针阵列技术及其应用[J]. 材料导报, 2023, 37(8): 21110160-10.
[12] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[13] 程瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体:综述[J]. 材料导报, 2023, 37(7): 21070186-12.
[14] 乔丽学, 曹睿, 车洪艳, 李晌, 王铁军, 董浩, 王彩芹, 闫英杰. M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理[J]. 材料导报, 2023, 37(7): 21090294-6.
[15] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed