Please wait a minute...
材料导报  2024, Vol. 38 Issue (10): 23070117-9    https://doi.org/10.11896/cldb.23070117
  无机非金属及其复合材料 |
基于ANN的HVFAC拉伸性能预测评价
倪彤元1,2, 杜鑫1, 莫云波3,*, 黄森乐1, 杨杨1,2, 刘金涛1,2
1 浙江工业大学土木工程学院,杭州 310023
2 浙江省工程结构与防灾减灾技术重点实验室,杭州 310023
3 浙江建投交通基础建设集团有限公司,杭州 310012
Prediction and Evaluation of HVFAC Tensile Properties Based on ANN
NI Tongyuan1,2, DU Xin1, MO Yunbo3,*, HUANG Senle1, YANG Yang1,2, LIU Jintao1,2
1 College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
2 Zhejiang Key Laboratory of Civil Engineering Structures & Disaster Prevention and Mitigation Technology, Hangzhou 310023, China
3 Zhejiang Infrastructure Construction Group Co., Ltd., Hangzhou 310012, China
下载:  全 文 ( PDF ) ( 15216KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于人工神经网络(ANN)预测混凝土拉伸性能,对研究混凝土开裂机制具有重要意义。基于团队实验数据获得不同粉煤灰掺量、骨胶比、水胶比和养护龄期下大掺量粉煤灰混凝土(HVFAC)的抗压强度、极限拉伸应变、抗拉强度和拉伸弹性模量数据,用均方根误差(RMSE)最小原则建立一种预测HVFAC拉伸性能的ANN模型,并用公开发表的文献数据对该预测模型可靠性进行分析评估。结果表明:模型预测结果与实验结果的相关系数均大于0.94,文献中的实验值与模型预测值的误差均在±20%以内,说明所建立的模型有较高的预测精度。基于ANN影响权重分析发现:骨胶比对HVFAC的抗压强度、极限拉伸应变和拉伸弹性模量的影响最大;对于HVFAC的拉伸性能,在早龄期时水胶比的影响程度较大,但随着龄期的延长,粉煤灰掺量的影响程度逐渐上升并超过水胶比。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
倪彤元
杜鑫
莫云波
黄森乐
杨杨
刘金涛
关键词:  人工神经网络  粉煤灰混凝土  抗拉强度  弹性模量  极限拉伸应变    
Abstract: The application of artificial neural networks (ANN) to predict the tensile properties of concrete is essential to study the understanding of concrete cracking mechanisms. Based on experimental data obtained for the compressive strength, ultimate tensile strain, tensile strength, and tensile modulus of elasticity of high-volume fly ash concrete (HVFAC), which varied in terms of fly ash admixture, aggregate-cement ratio, water-cement ratio, and curing age. This data was used to develop an artificial neural network (ANN) model to predict and evaluate the tensile properties of HVFAC using the RMSE minimum principle. The reliability of the prediction model was analyzed and evaluated with published literature data. The results show that the correlation coefficients between both predicted and experimental data are higher than 0.94, and the errors between the literature experimental and predicted values are within ±20% indicating that the established model has a high prediction accuracy. The weight analysis of ANN effects show that the aggregate-cement ratio has a greater effect on the compressive strength, ultimate tensile strain and tensile elastic modulus of HVFAC. Regarding the tensile properties of HVFAC, the water-cement ratio has a greater influence at the early stage. Howe-ver, with the development of age, the effect of fly ash admixture gradually increases and exceeds the effect of water-cement ratio.
Key words:  artificial neural network    fly ash concrete    tensile strength    modulus of elasticity    ultimate tensile strain
出版日期:  2024-05-25      发布日期:  2024-05-28
ZTFLH:  TV42  
基金资助: 浙江省重点研发计划项目(2021C01060)
通讯作者:  *莫云波,浙江建投交通基础建设集团有限公司正高级工程师。目前主要从事道路桥梁施工技术管理等方面的研究工作,发表论文10余篇。moyunbo@zjsjjjt.com   
作者简介:  倪彤元,浙江工业大学高级工程师、 硕士研究生导师。目前主要研究领域为混凝土结构变形与裂缝监测及防治、工业废弃物资源化综合利用等。发表论文 40 余篇,包括 Construction and Building Materials、Measurement 等。
引用本文:    
倪彤元, 杜鑫, 莫云波, 黄森乐, 杨杨, 刘金涛. 基于ANN的HVFAC拉伸性能预测评价[J]. 材料导报, 2024, 38(10): 23070117-9.
NI Tongyuan, DU Xin, MO Yunbo, HUANG Senle, YANG Yang, LIU Jintao. Prediction and Evaluation of HVFAC Tensile Properties Based on ANN. Materials Reports, 2024, 38(10): 23070117-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23070117  或          http://www.mater-rep.com/CN/Y2024/V38/I10/23070117
1 Schindler A, Mccullough B. Transportation Research Record, 2002, 1813, 3.
2 Yoshitake I, Komure H, Nassif A Y, et al. Construction and Building Materials, 2013, 49, 101.
3 Maruyama I, Lura P. Cement and Concrete Research, 2019, 123, 105770.
4 Nazeer M, Kapoor K, Singh S P. Journal of Building Engineering, 2023, 69, 106275.
5 Nassar R U D, Room S. Materials Today:Proceedings, 2023, 80(2), 135.
6 Yang Y, Wang Y C, Gao F, et al. Journal of the Chinese Ceramic Society, 2019, 47(8), 1101(in Chinese).
杨杨, 王亦聪, 高凡, 等. 硅酸盐学报, 2019, 47(8), 1101.
7 Giergiczny Z. Cement and Concrete Research, 2019, 124, 105826.
8 Duan Z H, Kou S C, Poon C S. Construction and Building Materials, 2013, 40, 1200.
9 Shanmugasundaram N, Praveenkumar S, Gayathiri K, et al. Construction and Building Materials, 2022, 342, 127933.
10 Yeh I C. Cement and Concrete Research, 1998, 28(12), 1797.
11 Molaabasi H, Saberian M, Li J. Construction and Building Materials, 2019, 202, 784.
12 Guo L, Li Z, Tian Q, et al. Materials Today Communications, 2023, 34.
13 Zhu L, Wen T, Tian L. Construction and Building Materials, 2022, 341, 127878.
14 Mehta V. Journal of Building Engineering, 2023, 70, 106363.
15 Ray S, Haque M, Ahmed T, et al. Journal of King Saud University-Engineering Sciences, 2023, 35(3), 185.
16 Ispir M, Ates A O, Ilki A. Structures, 2022, 38, 1615.
17 Yang Y, Jiang C H, Xu S F. Journal of Building Materials, 2008, 47(1), 94(in Chinese).
杨杨, 江晨晖, 许四法. 建筑材料学报, 2008, 47(1), 94.
18 Yang Z B, Huang S L, Yao J K, at al. Concrete, 2022(10), 151(in Chinese).
杨忠波, 黄森乐, 姚冀恺, 等. 混凝土, 2022(10), 151.
19 Gu C P, Yao J K, Huang S L, et al. Materials and Structures, 2022, 55(5).
20 Lam L, Wong Y L, Poon C S. Cement and Concrete Research, 1998, 28(2), 271.
21 Qin H G, Pan G H, Sun W. Journal of Sountheast University(Natural Science Edition), 2002(5), 779(in Chinese).
秦鸿根, 潘钢华, 孙伟. 东南大学学报(自然科学版), 2002(5), 779.
22 Swaddiwudhipong S, Lu H R, Wee T H. Cement and Concrete Research, 2003, 33(12), 2077.
23 Zhang M H, Tam C T, Leow M P. Cement and Concrete Research, 2003, 33(10), 1687.
24 Sun J G. Building Structure, 2017(4), 17(in Chinese).
孙家国. 建筑结构, 2017(4), 17.
25 Lee K M, Lee H K, Lee S H, et al. Cement and Concrete Research, 2006, 36(7), 1279.
26 Güneyisi E, Gesoğlu M, Mermerdaş K. Materials and Structures, 2007, 41(5), 937.
27 Chen B, Zhang Y M, Guo L P. Journal of Sountheast University(Natural Science Edition), 2007(2), 334(in Chinese).
陈波, 张亚梅, 郭丽萍. 东南大学学报(自然科学版), 2007(2), 334.
28 Jiang C H. Study on tensile propertles of high strength concrete at early ages. Master’s Thesis, Zhejiang University of Technology, China, 2007(in Chinese).
江晨晖. 混凝土早期抗拉性能研究. 硕士学位论文, 浙江工业大学, 2007.
29 Li Y Q, Niu D T, Song H. Concrete, 2009(3), 47(in Chinese).
李懿卿, 牛荻涛, 宋华. 混凝土, 2009(3), 47.
30 He T S, Su F Y, Bao X C, at al. Concrete, 2010(1), 86(in Chinese).
何廷树, 苏富赟, 包先诚, 等. 混凝土, 2010(1), 86.
31 Güneyisi E, Gesoğlu M, Karaoğlu S, et al. Construction and Buil-ding Materials, 2012, 34, 120.
32 Zhang C. Study on fly ash and cinder used as cement admixture and the influence of fly ash dosage on the strength of concrete. Master’s Thesis, Xi’an University of Architecture and Technology, China, 2012(in Chinese).
张超. 粉煤灰和炉渣作水泥混合材及粉煤灰掺量对不同水胶比混凝土的强度影响研究. 硕士学位论文, 西安建筑科技大学, 2012.
33 Liu D J. Influence of fly ash on early-age mechanical properties and tensile creep of high performance concrete. Master’s Thesis, Zhejiang University of Technology, China, 2016(in Chinese).
刘东京. 粉煤灰对高性能混凝土早期力学性能与拉伸徐变特性的影响. 硕士学位论文, 浙江工业大学, 2016.
34 Ning F W, Chen B, Wang Z L, at al. China Concrete and Cement Pro-ducts, 2016(10), 5(in Chinese).
宁逢伟, 陈波, 王子龙, 等. 混凝土与水泥制品, 2016(10), 5.
35 Gu C P, Wang Y, Gao F, et al. Construction and Building Materials, 2019, 197, 766.
36 Afroughsabet V, Teng S. Cement and Concrete Composites, 2020, 106, 103481.
37 Fahim H G, Hussein J Z, Pervez M R, et al. Materials Today:Procee-dings, 2021, 46, 2036.
38 Wang Q, Wang Y Y, Geng Y, et al. Construction and Building Mate-rials, 2021, 268, 121197.
39 Weng J R, Liao W C. Construction and Building Materials, 2021, 308, 125045.
40 Liu J, An R, Jiang Z, et al. Construction and Building Materials, 2022, 321, 126333.
41 Shen D, Liu C, Kang J, et al. Cement and Concrete Composites, 2022, 131, 104550.
42 Tian L, Jiao M, Fu H, et al. Construction and Building Materials, 2022, 335, 127506.
43 Jin M S, Song Y, Sun J F, at al. Water Conservancy Science and Techno-logy and Economy, 2022, 28(8), 109(in Chinese).
金明山, 宋杨, 孙剑飞, 等. 水利科技与经济, 2022, 28(8), 109.
44 Li X F, Liu W, Sun S N. Industrial Construction, 2006(6), 77(in Chinese).
李晓芬, 刘伟, 孙少楠. 工业建筑, 2006(6), 77.
45 Jiang C H, Shen W Y, Jiang L B. Industrial Construction, 2010, 40(7), 71(in Chinese).
江晨晖, 沈万岳, 姜丽彬. 工业建筑, 2010, 40(7), 71.
46 Zhao L Z, Yang P, Liu C. Hydro-Science and Engineering, 2013(1), 35(in Chinese).
赵联桢, 杨平, 刘成. 水利水运工程学报, 2013(1), 35.
47 Li X F, Chen M, Liu L X. Building Structure, 2014, 44(11), 90(in Chinese).
李晓芬, 陈萌, 刘立新. 建筑结构, 2014, 44(11), 90.
48 He X X, Zhang Y H. Industrial Construction, 2017, 47(4), 130(in Chinese).
何淅淅, 张延赫. 工业建筑, 2017, 47(4), 130.
49 Kim J E, Park W S, Eom N Y, et al. Applied Mechanics and Materials, 2013, 372, 231.
50 Eom N Y, Park W S, Kim J E, et al. Applied Mechanics and Materials, 2013, 372, 243.
51 Ly H B, Nguyen T A, Thi Mai H V, et al. Construction and Building Materials, 2021, 301, 124081.
52 Dong Y, Fu Z, Peng Y, et al. Journal of Cleaner Production, 2020, 246, 118735.
53 Feng C H, Shen Z Q, Li D X. Materials Reports, 2014(4), 130(in Chinese).
冯春花, 沈振球, 李东旭. 材料导报, 2014(4), 130.
54 Zhou P, Xie S L, Li Q. Bulletin of the Chinese Ceramic Society, 2018(3), 231(in Chinese).
周朋, 谢松林, 李强. 硅酸盐通报, 2018(3), 231.
55 Li X, Yan P Y, A R H. Journal of the Chinese Ceramic Society, 2009, 37(10), 1597(in Chinese).
李响, 阎培渝, 阿茹罕. 硅酸盐学报, 2009, 37(10), 1597.
56 Sun Z P, Geng Y, Yang H J, at al. Journal of Building Materials, 2022, 25(10), 999(in Chinese).
孙振平, 耿瑶, 杨海静, 等. 建筑材料学报, 2022, 25(10), 999.
57 Liao Y S, Shen Q, Xu P F, at al. Materials Reports, 2019, 33(8), 1335(in Chinese).
廖宜顺, 沈晴, 徐鹏飞, 等. 材料导报, 2019, 33(8), 1335.
58 Xie J L. Calculation of indicator’s weight of public hospital regulation based on BP neural network. Master’s Thesis, Huazhong University of Science & Technology, China, 2013(in Chinese).
谢金亮. 基于BP神经网络的公立医院运行监管指标权重测算研究. 硕士学位论文, 华中科技大学, 2013.
59 Liu P, Yu Z W, Chen L K. Journal of Building Materials, 2012, 15(5), 717(in Chinese).
刘鹏, 余志武, 陈令坤. 建筑材料学报, 2012, 15(5), 717.
60 JSCE (2013) Standard specifications for concrete structures. Japan Society of Civil Engineers, Tokyo, 2013.
61 ACI (2008) 318-08 Building Code for Structural Concrete. American Concrete Institute, USA, 2008.
62 Yuan J Z, Chen S C, Dong C Y F, at al. Bulletin of the Chinese Ceramic Society, 2023, 42(10), 3530. (in Chinese).
贠建洲, 陈顺超, 董春彦, 等. 硅酸盐通报, 2023, 42(10), 3530.
63 Parra C, Valcuende M, Gómez F. Construction and Building Materials, 2011, 25(1), 201.
[1] 牛克心, 余为, 郝颖. 通孔球壳胞元结构压缩力学性能[J]. 材料导报, 2024, 38(9): 22100287-6.
[2] 霍海峰, 杨雅静, 孙涛, 樊戎, 蔡靖, 胡彪. 有压与无压烧结雪无侧限抗压强度对比试验研究[J]. 材料导报, 2024, 38(5): 23060124-6.
[3] 褚洪岩, 汤金辉, 王群, 高李, 赵志豪. 采用纳米氧化铝制备高弹性模量超高性能混凝土的可行性研究[J]. 材料导报, 2024, 38(5): 22110073-6.
[4] 李超, 周梅, 李杨, 张凯, 郭凌志. 固废粗集料平均弹性模量与混凝土弹性模量的相关性[J]. 材料导报, 2024, 38(4): 22050271-8.
[5] 张道琦, 张林, 郭晓, 王恩刚. Cu-Ag高强高导合金的研究现状与进展[J]. 材料导报, 2023, 37(13): 21040152-6.
[6] 朱红光, 侯金良, 石晶, 葛洁雅, 吕威, 杨森, 李宗徽, 沈正艳. 碱激发材料修补普通混凝土的黏结面性能研究[J]. 材料导报, 2022, 36(16): 21030218-5.
[7] 侯永强, 尹升华, 曹永, 杨世兴, 张敏哲. 尾砂胶结充填体单轴受压应力-应变关系及其损伤本构模型[J]. 材料导报, 2022, 36(16): 21010265-8.
[8] 严金生, 周洲, 张庆年, 施韬, 周威杰, 胡卓君. 不同温度煅烧凹凸棒土的水化活性[J]. 材料导报, 2021, 35(z2): 248-253.
[9] 于芳, 晁代义, 邢雷, 王欣, 黄同瑊, 王向杰. 单级时效工艺对7075铝合金包覆薄板力学性能的影响[J]. 材料导报, 2021, 35(Z1): 411-413.
[10] 史金华, 史才军, 欧阳雪, 刘剑辉, 黄勇, 吴泽媚. 超高性能混凝土受压弹性模量研究进展[J]. 材料导报, 2021, 35(3): 3067-3075.
[11] 黄炜, 葛培, 李萌, 许洪飞. 混杂纤维再生砖骨料混凝土正交试验及卷积神经网络预测分析[J]. 材料导报, 2021, 35(19): 19022-19029.
[12] 黄炜, 周烺, 葛培, 杨涛. 基于PSO-BP和GA-BP神经网络再生砖骨料混凝土强度模型的对比研究[J]. 材料导报, 2021, 35(15): 15026-15030.
[13] 黄同瑊, 秦宇, 晁代义, 王志雄, 宋晓霖, 张华, 程仁策. 大尺寸Al-Cu-Mg-Mn合金铸锭均匀化工艺研究[J]. 材料导报, 2020, 34(Z1): 325-327.
[14] 徐培蓁, 陈发滨, 李泉荃, 任艺楠, 吴春然, 朱亚光. 微生物矿化沉积对再生骨料界面过渡区的影响[J]. 材料导报, 2020, 34(6): 6095-6099.
[15] 宋维龙, 朱志铎, 浦少云, 宋世攻, 彭宇一, 顾晓彬, 魏永强. 碱激发二元/三元复合工业废渣胶凝材料的力学性能与微观机制[J]. 材料导报, 2020, 34(22): 22070-22077.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed