Please wait a minute...
材料导报  2024, Vol. 38 Issue (4): 22050271-8    https://doi.org/10.11896/cldb.22050271
  无机非金属及其复合材料 |
固废粗集料平均弹性模量与混凝土弹性模量的相关性
李超1,2,3, 周梅1,2,*, 李杨4, 张凯1,2, 郭凌志1,2
1 辽宁工程技术大学土木工程学院,辽宁 阜新 123000
2 辽宁省煤矸石资源化利用及节能建材重点实验室,辽宁 阜新 123000
3 辽宁铁道职业技术学院铁道工程学院,辽宁 锦州 121000
4 锦州市规划设计研究院有限公司,辽宁 锦州 121000
Correlation Between Average Elastic Modulus of Solid Waste Coarse Aggregate and Elastic Modulus of Concrete
LI Chao1,2,3, ZHOU Mei1,2,*, LI Yang4, ZHANG Kai1,2, GUO Lingzhi1,2
1 College of Civil Engineering, Liaoning Technical University, Fuxin 123000, Liaoning, China
2 Liaoning Key Laboratory of Coal Gangue Utilization and Energy-Saving Building Materials, Fuxin 123000, Liaoning, China
3 Department of Railway Engineering, Liaoning Railway Vocational and Technical College, Jinzhou 121000, Liaoning, China
4 Jinzhou Urban Planning and Design Institute Co., Ltd., Jinzhou 121000, Liaoning, China
下载:  全 文 ( PDF ) ( 16228KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 试验研究了12种不同固废粗集料压碎值试验中σ-ε曲线与配制混凝土的静态弹性模量之间关系,进行了压碎值试验固废粗集料变形的离散元数值模拟,分析了国内外主要标准中公式计算固废粗集料混凝土弹性模量误差偏大的原因。研究结果表明:基于中国、美国和欧洲标准的普通密度固废粗集料混凝土弹性模量计算值分别高出实测值45.5%、15.8%和52.5%;固废粗集料在压碎值试验σ-ε曲线的线性区间主要发生弹性变形;建立的固废粗集料σ-ε曲线指数模型拟合度高,R2均大于0.99;通过在传统的压碎值试验中引入粗集料平均弹性模量、含水系数等参数,回归建立了固废粗集料混凝土弹性模量半经验公式,R2为0.867。利用已有文献数据对半经验公式的普适性进行了检验,高判定系数(R2=0.895)实测值与预测值的比较表明模型具有有效性,为快速、可靠预测固废粗集料混凝土弹性模量提供了依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李超
周梅
李杨
张凯
郭凌志
关键词:  固体废弃物  粗集料  压碎值  集料平均弹性模量  混凝土弹性模量  离散元    
Abstract: The correlation between the σ-ε curve characteristics of twelve solid waste coarse aggregate in the crushing value test and the static elastic modulus of concrete was studied experimentally, and the deformation of coarse aggregate in crushing value test was simulated by discrete element method, as well as the reason of big error in calculating elastic modulus of solid waste coarse aggregate concrete by expressions in main codes at home and abroad was analyzed. The results showed that the calculated values of elastic modulus of ordinary density solid waste coarse aggregate concrete by the codes from Chinese, American and European are 45.5%, 15.8% and 52.5% higher than the measured values, respectively;the solid waste coarse aggregate maintains almost elastic state within the linear region of σ-ε curve;the established solid waste coarse aggregate σ-ε curve exponential model has a high degree of fit, R2>0.99;by introducing the parameters such as average elastic modulus and water content coefficient of coarse aggregate based on the traditional crushing value test, the semi-empirical expression of elastic modulus of solid waste coarse aggregate concrete was established by regression, and R2 is 0.867. Finally, the general applicability of the semi-empirical expression was tested by the measured values from literature, and the high judgment coefficient (R2=0.895) shows the effectiveness of the expression, which provides a basis for fast and reliable prediction of elastic modulus of solid waste coarse aggregate concrete.
Key words:  solid waste    coarse aggregate    crushing value    average elastic modulus of aggregate    elastic modulus of concrete    discrete element method
出版日期:  2024-02-25      发布日期:  2024-03-01
ZTFLH:  TU528  
基金资助: 国家自然科学基金(U1261122)
通讯作者:  *周梅,辽宁工程技术大学教授级高级工程师、博士研究生导师。现任辽宁省煤基固废资源化利用工程研究中心主任、辽宁省煤矸石资源化利用及节能建材重点实验室常务副主任、中国硅酸盐学会固废与生态材料分会理事。主要从事先进土木工程材料、煤基固废建材资源化利用等研究工作。先后主持和参与国家和省部级科技项目10余项,获省部级以上科研奖励2项,主编和参编各类标准5部,在国内外重要期刊发表学术论文150余篇。zhoumei1108@126.com   
作者简介:  李超,辽宁铁道职业技术学院讲师。2003年7月、2010年4月分别于辽宁工程技术大学和辽宁工业大学获得工学学士学位和硕士学位。现为辽宁工程技术大学土木工程学院博士研究生,目前主要研究领域为固体废弃物的建材资源化利用。主持和参与省部级科技项目3项,发表SCI、EI检索论文5篇,授权发明和实用新型专利6项,参编标准1部。
引用本文:    
李超, 周梅, 李杨, 张凯, 郭凌志. 固废粗集料平均弹性模量与混凝土弹性模量的相关性[J]. 材料导报, 2024, 38(4): 22050271-8.
LI Chao, ZHOU Mei, LI Yang, ZHANG Kai, GUO Lingzhi. Correlation Between Average Elastic Modulus of Solid Waste Coarse Aggregate and Elastic Modulus of Concrete. Materials Reports, 2024, 38(4): 22050271-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050271  或          http://www.mater-rep.com/CN/Y2024/V38/I4/22050271
1 Keshavarz Z, Mostofinejad D. Construction and Building Materials, 2019, 195(20), 218.
2 Huang Y, He X, Sun H, et al. Construction and Building Materials, 2018, 192, 330.
3 Shi C J, Cao Z J, Xie Z B. Materials Reports, 2016, 30(11), 96 (in Chinese).
史才军, 曹芷杰, 谢昭彬. 材料导报, 2016, 30(11), 96.
4 Zhou M, Dou Y W, Zhang Y Z, et al. Construction and Building Mate-rials, 2019, 220, 386.
5 Zhang Y Z, Wang Q H, Zhou M, et al. Construction and Building Materials, 2020, 255, 1.
6 Wang Q H, Wang Y Y, Geng Y, et al. Construction and Building Materials, 2021, 268, 197.
7 Li H, Xiao J Z. Journal of Building Materials, 2012, 15(2), 260 (in Chinese).
李宏, 肖建庄. 建筑材料学报, 2012, 15(2), 260.
8 China Academy of Building Research. Code for design of concrete structures(GB50010-2010(2015)), China Architecture and Building Press, China, 2015, pp.287 (in Chinese).
中国建筑科学研究院. 混凝土结构设计规范 (GB50010-2010(2015年版)), 中国建筑工业出版社, 2015, pp.287.
9 China Academy of Building Research. Technical specification for lightweight aggregate concrete (JGJ51-2002), China Architecture and Buil-ding Press, China, 2002, pp.52 (in Chinese).
中国建筑科学研究院. 轻集料混凝土技术规程 (JGJ51-2002), 中国建筑工业出版社, 2002, pp.52.
10 ACI Committee. Building code requirements for structural concrete (ACI 318-19), American Concrete Institute, USA, 2019, pp.356.
11 Fib Special Activity Group 5. Model code 2010, International Federation for Structural Concrete, Switzerland, 2010, pp.118.
12 Mehta P K, Monteiro P. Concrete: Microstructure, Properties, and Materials, fourth ed., McGraw-Hill Education, USA, 2014, pp.106.
13 Beshr H, Almusallam A A, Maslehuddin M. Construction and Building Materials, 2003, 17(2), 97.
14 Wu K R, Bing C, Wu Y, et al. Cement and Concrete Research, 2001, 31(10), 1421.
15 Chi J M, Huang R, Yang C C, et al. Cement and Concrete Composites, 2003, 25(2), 197.
16 Zhou F P, Lydon F D, Barr B I G. Cement and Concrete Research, 1995, 25(1), 177.
17 Wang Q H, Li Z, Zhang Y Z, et al. Journal of Shenyang Jianzhu University (Natural Science), 2021, 37(2), 254 (in Chinese).
王庆贺, 李喆, 张玉琢, 等. 沈阳建筑大学学报(自然科学版), 2021, 37(2), 254.
18 Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for test methods of engineering rock mass (GB/T 50266-2013), China Planning Press, China, 2013, pp.21 (in Chinese).
中华人民共和国住房和城乡建设部. 工程岩体试验方法标准(GB/T 50266-2013), 中国计划出版社, 2013, pp.21.
19 Liu X B, Li P J, Ji Y Q. Concrete, 2005(3), 35 (in Chinese).
刘巽伯, 李平江, 计亦奇. 混凝土, 2005(3), 35.
20 Butler L, West J S, Tighe S L. Construction and Building Materials, 2013, 47, 1292.
21 Wu L P, Cheng Z L, Ding H S. Journal of Yangtze River Scientific Research Institute, 2007(5), 64 (in Chinese).
吴良平, 程展林, 丁红顺. 长江科学院院报, 2007(5), 64.
22 Sun Y N, Zhang P S, Yan W, et al. Coal Science and Technology, 2019, 47(12), 56 (in Chinese).
孙亚楠, 张培森, 颜伟, 等. 煤炭科学技术, 2019, 47(12), 56.
23 Research Institute of Highway Ministry of Transport, Test methods of aggregate for highway engineering (JTG E42-2005), China Communications Press, China, 2005, pp.45 (in Chinese).
交通部公路科学研究所. 公路工程集料试验规程 (JTG E42-2005), 人民交通出版社, 2005, pp.45.
24 Ma Z G, Guo G L, Chen R H, et al. Chinese Journal of Rock Mechanics and Engineering, 2005(7), 1139 (in Chinese).
马占国, 郭广礼, 陈荣华, 等. 岩石力学与工程学报, 2005(7), 1139.
25 Yu B Y, Chen Z Q, Wu J Y, et al. Rock and Soil Mechanics, 2016, 37(7), 1887(in Chinese).
郁邦永, 陈占清, 吴疆宇, 等. 岩土力学, 2016, 37(7), 1887.
26 China Aggregates Association. Pebble and crushed stone for construction (GB/T 14685-2011), China Standards Press, China, 2011, pp.4 (in Chinese).
中国砂石协会. 建设用卵石、碎石 (GB/T 14685-2011), 中国标准出版社, 2011, pp.4.
27 China Academy of Building Research. Aggregate for high performance concrete (JG/T 568-2019), China Architecture and Building Press, China, 2019, pp.9 (in Chinese).
中国建筑科学研究院. 高性能混凝土用集料 (JG/T 568-2019), 中国建筑工业出版社, 2019, pp.9.
28 China Academy of Building Research, Specification for mix proportion design of ordinary concrete (JGJ55-2011), China Architecture and Building Press, China, 2011, pp.11 (in Chinese).
中国建筑科学研究院. 普通混凝土配合比设计规程 (JGJ55-2011), 中国建筑工业出版社, 2011, pp.11.
29 China Academy of Building Research. Technical standard for application of lightweight aggregate concrete (JGJ/T 12-2019), China Architecture & Building Press, China, 2019, pp.17 (in Chinese).
中国建筑科学研究院. 轻集料混凝土应用技术标准 (JGJ/T 12-2019), 中国建筑工业出版社, 2019, pp.17.
30 Li S W, Zhou M, Zhang L M. Journal of Building Materials, 2020, 23(2), 334 (in Chinese).
李少伟, 周梅, 张莉敏. 建筑材料学报, 2020, 23(2), 334.
31 Zhou M, Li G D, Dou Y W, et al. Bulletin of the Chinese Ceramic Society, 2018, 37(11), 3528 (in Chinese).
周梅, 李国栋, 窦艳伟, 等. 硅酸盐通报, 2018, 37(11), 3528.
32 Ministry of Housing and Urban-Rural Development of the People’s Republic of China, Standard for test methods of concrete physical and mechanical properties (GB/T 50081-2019), China Architecture and Buil-ding Press, China, 2019, pp.12 (in Chinese).
中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准 (GB/T 50081-2019), 中国建筑工业出版社, 2019, pp.12.
33 Zhang Z N, Mao X B, Ge X R. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(18), 3049 (in Chinese).
张振南, 茅献彪, 葛修润. 岩石力学与工程学报, 2004, 23(18), 3049.
34 Ministry of Water Resources of the People’s Republic of China. Standard for geotechnical testing method (GB/T 50123-2019), China Planning Press, China, 2019, pp.87 (in Chinese).
中华人民共和国水利部. 土工试验方法标准 (GB/T 50123-2019), 中国计划出版社, 2019, pp.87.
35 Feng M M, Wu J Y, Chen Z Q, et al. Journal of China Coal Society, 2016, 41(9), 2195 (in Chinese).
冯梅梅, 吴疆宇, 陈占清, 等. 煤炭学报, 2016, 41(9), 2195.
36 Клейн Г К, Chen W J (translator). Structural mechanics of bulk particles, China Railway Press, China, 1983, pp.20 (in Chinese).
克列因 Г К, 陈万佳 (译). 散粒体结构力学, 中国铁道出版社, 1983, pp.20.
37 Ministry of Water Resources of the People’s Republic of China. Code for rock tests in water and hydropower projects (SL/T 264-2020), China Water and Power Press, China, 2020, pp.19 (in Chinese).
中华人民共和国水利部. 水利水电工程岩石试验规程 (SL/T 264-2020), 中国水利水电出版社, 2020, pp.19.
38 Xie H Y, Liu Z J. Powder mechanics and engineering, second ed., Chemical Industry Press, China, 2019, pp.35 (in Chinese).
谢洪勇, 刘志军. 粉体力学与工程 (第二版). 化学工业出版社, 2019, pp.35.
39 Gong L S, Liu C P. Lightweight aggregate concrete, China Railway Press, China, 1996, pp.233 (in Chinese).
龚洛书, 柳春圃. 轻集料混凝土, 中国铁道出版社, 1996, pp.233.
40 Li J P, Lian M J. Mining rock mechanics, Metallurgical Industry Press, China, 2011, pp.70 (in Chinese).
李俊平, 连民杰. 矿山岩石力学, 冶金出版社, 2011, pp.70.
41 Xu W. Concrete, 2006(9), 45 (in Chinese).
徐蔚. 混凝土, 2006(9), 45.
42 Niu X Y, Gao Q X, Li S Z, et al. Journal of Hebei University (Natural Science Edition), 2022, 42(2), 131 (in Chinese).
牛晓燕, 高琦翔, 李深圳, 等. 河北大学学报(自然科学版), 2022, 42(2), 131.
43 Li G C, Shu Z, Zhang C Y. Journal of Shenyang Jianzhu University (Natural Science), 2010, 26(6), 1052 (in Chinese).
李帼昌, 舒铮, 张春雨. 沈阳建筑大学学报(自然科学版), 2010, 26(6), 1052.
44 Gong L S, Ding W. Concrete, 2002(3), 13 (in Chinese).
龚洛书, 丁威. 混凝土, 2002(3), 13.
45 Yang S Y, Zhou M, Zhang Y Z, et al. Journal of Building Materials, 2020, 23(4), 858 (in Chinese).
杨尚谕, 周梅, 张玉琢, 等. 建筑材料学报, 2020, 23(4), 858.
46 Xie Y B, Ping L, Li R B, et al. China Concrete and Cement Products, 2018(2), 95 (in Chinese).
谢永滨, 平乐, 李荣彬, 等. 混凝土与水泥制品, 2018(2), 95.
[1] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[2] 万文豪, 杨飞华, 王发洲, 张日红, 刘云鹏. 助熔成分对工程渣土烧制轻质陶粒性能的影响[J]. 材料导报, 2023, 37(7): 21120103-6.
[3] 朱月风, 赵向臻, 司春棣, 闫涛, 李彦伟. 自修复型微胶囊在沥青路面中的受力分析及破裂机制[J]. 材料导报, 2022, 36(10): 20120095-6.
[4] 苏博文, 史公初, 廖亚龙, 张宇, 王伟, 郗家俊. 工业固体废弃物制备二氧化硅功能材料的研究进展[J]. 材料导报, 2021, 35(3): 3026-3032.
[5] 赵丹丹, 王舒笑, 顾菁, 单锐, 袁浩然. 基于固废炭基催化剂的稻壳热解气体提质研究[J]. 材料导报, 2021, 35(11): 11001-11006.
[6] 李微, 韩森, 黄啟波, 姚腾飞, 徐鸥明. 细粒式薄表层沥青混合料中粗集料的骨架特性[J]. 材料导报, 2019, 33(4): 617-624.
[7] 张航, 郝培文, 凌天清, 王学武, 何亮. 高温重复荷载作用下复合纤维沥青混合料细微观结构分析[J]. 材料导报, 2018, 32(6): 987-994.
[8] 马宏强, 易成, 朱红光, 董作超, 陈宏宇, 王佳欣, 李德毅. 煤矸石集料混凝土抗压强度及耐久性能[J]. 《材料导报》期刊社, 2018, 32(14): 2390-2395.
[9] 杨小龙, 申爱琴, 郭寅川, 赵学颖, 吕政桦. 沥青混合料动态模量预估模型研究进展[J]. 《材料导报》期刊社, 2018, 32(13): 2230-2240.
[10] 张文华, 陈振宇. 超高性能混凝土动态冲击拉伸性能研究*[J]. CLDB, 2017, 31(23): 103-108.
[11] 常明丰, 黄平明, 裴建中, 张久鹏. 基于离散元方法的沥青混合料力链演化及分布量化分析*[J]. 《材料导报》期刊社, 2017, 31(18): 155-159.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed