Please wait a minute...
材料导报  2024, Vol. 38 Issue (12): 23010131-8    https://doi.org/10.11896/cldb.23010131
  无机非金属及其复合材料 |
基于不规则骨料堆积结构的混凝土水渗透性的研究
李凯1,2, 杨璐璐1, 史才军1,2,*
1 湖南大学土木工程学院,绿色先进土木工程材料及应用技术湖南省重点实验室,长沙 410082
2 湖南省绿色先进土木工程材料国际科技创新合作基地,长沙 410082
Investigation on Water Permeability of Concrete Based on Irregular Aggregate Packing Structure
LI Kai1,2, YANG Lulu1, SHI Caijun1,2,*
1 Key Laboratory for Green & Advanced Civil Engineering Materials and Application Technology of Hunan Province, College of Civil Engineering, Hunan University, Changsha 410082, China
2 International Science and Technology Innovation Center for Green & Advanced Civil Engineering Materials of Hunan Province, Changsha 410082, China
下载:  全 文 ( PDF ) ( 23465KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了揭示骨料形状对混凝土水渗透性的影响,基于超椭球颗粒构建了不规则骨料的几何模型,对伸长率、平整度、圆度、球形度等形状参数进行了量化表征。通过离散元方法实现了骨料动态堆积模拟,考虑了颗粒之间的相互作用力,建立了混凝土材料的三相介观模型。采用基于格子玻尔兹曼模型的部分反弹算法研究了混凝土的水分传输行为,在验证模型正确性的基础上,探究了骨料含量和形状对混凝土水渗透性的影响。研究表明:混凝土的水分渗透系数随骨料体积分数增大呈现先降低后增加的变化趋势。当骨料体积分数大于50%时,界面过渡区相互交叠形成连通路径是导致混凝土水分渗透系数增加的主要原因。骨料形状的变化会改变传输路径和界面过渡区的体积分数,从而影响水渗透性。与平整度相比,伸长率对水分渗透系数的影响更为明显。随着圆度的不断增加,球形度先增大后减小,水分渗透系数则呈现相反的变化趋势。当圆度为1时,水分渗透系数达到最小值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李凯
杨璐璐
史才军
关键词:  混凝土  离散元模拟  超椭球  格子玻尔兹曼方法  水分渗透系数    
Abstract: In order to understand the influence of aggregate shape on water permeability of concrete, an irregular aggregate model is first constructed based on hyperellipsoid particles. Then, aggregate shape is quantitatively characterized (i.e., elongation, flatness, roundness, sphericity) and the dynamic packing process of different aggregates is modelled by discrete element method, in which the interactions between particles are well considered. Afterwards, a three-phase mesoscopic model of concrete is established and the water transport in concrete is simulated by using a partial bounce-back lattice Boltzmann method. After validating the proposed model, the effects of aggregate content and shape on water permeability are studied. The results show that the permeability of concrete first decreases and then goes up at an increased aggregate volume fraction. Once the content of aggregate is larger than 50%, the formed connected transport path due to the overlapping of the interfacial transition areas (ITZ) results in the increase in water permeability. The changes in aggregate shape affect the flow path, the volume fraction of ITZ and thus the permeability. In contrast to flatness, the influence of elongation on water permeability seems to be more significant. As roundness gradually rises, sphericity initially increases and then goes down, while water permeability shows an inverse tendency. The minimum value of water permeability can be obtained when the roundness is equal to 1.
Key words:  concrete    discrete element modelling    hyperellipsoid    lattice boltzmann method    water permeability
出版日期:  2024-06-25      发布日期:  2024-07-17
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51908207;52178205);湖南省自然科学基金(2021JJ40075)
通讯作者:  *史才军,1984年6月毕业于东南大学,获得工学学士学位,1987年2月毕业于东南大学,获得工学硕士学位,1989年12月毕业于南京化工大学,获得工学博士学位,1992年12月毕业于加拿大卡尔加里大学,获得工学博士学位。乌克兰工程院外籍院士、国家特聘专家、湖南省特聘专家、亚洲混凝土联合会主席,湖南大学 985工程创新平台首席科学家、特聘教授、建筑安全和节能重点实验室教育部主任、绿色高性能土木工程材料及应用技术湖南省重点实验室主任、湖南省绿色高性能土木工程材料国际创新科技合作基地主任、博士研究生导师。在水泥和混凝土材料的设计、测试、耐久性、智能防渗漏材料及废物的利用和处置方面开展了广泛深入的研究工作,发表高水平学术论文540余篇。出版英文著作7部、中文著作3部,合编国际会议英文论文集 9本。2015—2020年“建设与建造”领域中国高被引学者排名第一,在斯坦福大学Ioannidis教授团队发布的“2021年度科学影响力排行榜”和“终身科学影响力排行榜(1960—2021)”的榜单上,在建筑和建造领域分别排名第2和第4,2001年、2007年和2016年分别当选为国际能源研究会、美国混凝土学会及国际材料与结构联合会的会士。cshi@hnu.edu.cn   
作者简介:  李凯,2019年6月毕业于武汉理工大学,获得工学学士学位,2012年6月毕业于武汉理工大学,获得工学硕士学位,2017年9月毕业于荷兰代尔夫特理工大学,获得工学博士学位。副教授/博士研究生导师,湖南省青年百人,绿色先进土木工程材料及应用技术湖南省重点实验室和湖南省绿色先进土木工程材料国际科技创新合作基地骨干成员,教育部学位中心论文评审专家、湖南省科技专家库专家、浙江省科技专家库专家、广东省科技专家库专家,中国硅酸盐学会固废与生态材料分会第二届理事会青年工作委员会委员。主要从事基于计算机模拟技术的建筑材料与结构数字化设计、高性能与智能型水泥基材料制备、固废资源化及减碳等方面的研究工作。已发表学术论文27篇,以第一/通信作者发表高水平SCI和EI论文17篇,主持国家自然科学基金面上项目1项、青年项目1项、省级人才项目1项、湖南省自然科学基金1项,参编湖南省地方标准2项。
引用本文:    
李凯, 杨璐璐, 史才军. 基于不规则骨料堆积结构的混凝土水渗透性的研究[J]. 材料导报, 2024, 38(12): 23010131-8.
LI Kai, YANG Lulu, SHI Caijun. Investigation on Water Permeability of Concrete Based on Irregular Aggregate Packing Structure. Materials Reports, 2024, 38(12): 23010131-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23010131  或          http://www.mater-rep.com/CN/Y2024/V38/I12/23010131
1 Pan S T, Li K, Zhang C H, et al. Material Reports, 2022, 36(10), 89(in Chinese).
潘诗婷, 李凯, 张超慧, 等. 材料导报, 2022, 36(10), 89.
2 Thilakarathna P S M, Kristombu Baduge S, Mendis P, et al. Journal of Materials in Civil Engineering, 2021, 33(8), 04021198.
3 Huang Y J, Guo F Q, Zhang H, et al. Cement and Concrete Composites, 2022, 126, 104347.
4 Wittmann F H, Roelfstra P E, Sadouki H. Materials Science and Engineering, 1985, 68, 239.
5 Gao Z G, Liu G T. Journal of Tsinghua University (Science and Techno-logy), 2003(5), 710(in Chinese).
高政国, 刘光廷. 清华大学学报(自然科学版), 2003(5), 710.
6 Häfner S, Eckardt S, Könke C. In:Conference Record of 16 th IKM 2003. Weimar, 2003.
7 Qian Z W. Multiscale modeling of fracture processes in cementitious materials. Ph. D. Thesis, Delft University of Technology, NL, 2012.
8 Zhao S W, Zhao J D. International Journal for Numerical and Analytical Methods in Geomechanics, 2019, 43, 2147.
9 Zhang Y, Ye G, Yang Z X. Construction and Building Materials, 2020, 238, 117680.
10 Zhang M, Ye G, Breugel K. Computational Materials Science, 2013, 68, 142.
11 Chen S Y, You Z P, Yang S L, et al. Construction and Building Mate-rials, 2020, 240, 117896.
12 Li K, Xu L, Yang L L, et al. Journal of the Chinese Ceramic Society, 2022, 50(10), 2701(in Chinese).
李凯, 许立, 杨璐璐, 等. 硅酸盐学报, 2022, 50(10), 2701.
13 Barrett P J. Sedimentology, 1980, 27, 291.
14 Zhou Y, Liu Q F. Material Reports, 2023, 37(24), 22070243(in Chinese).
周宇, 刘清风. 材料导报, 2023, 37(24), 22070243.
15 Yang S L, Hu S T, Zhang W T. Powder Technology, 2022, 396, 210.
16 Yang J, Luo X D. Journal of the Mechanics and Physics of Solids, 2015, 84, 196.
17 Bergen G. Journal of Graphics Tools, 1997, 2, 1.
18 Zhao S W, Zhang N, Zhou X W, et al. Powder Technology, 2017, 310, 175.
19 Wellmann C, Lillie C, Wriggers P. Engineering Computations, 2008, 25, 432.
20 Bagi K. Granular Matter, 2003, 5, 45.
21 Li X X, Xu Y, Chen S H. Construction and Building Materials, 2016, 121, 100.
22 Scrivener K L, Crumbie A K, Laugesen P. Interface Science, 2004, 12, 411.
23 Xiao J Z, Li W G, Corr D J, et al. Cement and Concrete Research, 2013, 52, 82.
24 Huang Y J, Yang Z J, Ren W Y, et al. International Journal of Solids and Structures, 2015, 67, 340.
25 Huang Y J, Yang Z J, Chen X W, et al. International Journal of Impact Engineering, 2016, 97, 102.
26 Huang Y J, Guo F Q, Zhang H, et al. Cement and Concrete Composites, 2022, 126, 104347.
27 Wong H S, Zobel M, Buenfeld N R, et al. Magazine of Concrete Research, 2009, 61, 571.
28 Zhang Y, Zhang M Z. Construction and Building Materials, 2014, 72, 367.
29 Huang Y, Hu X, Shi C J, et al. Material Reports, 2023, 37(1), 106 (in Chinese).
黄燕, 胡翔, 史才军, 等. 材料导报, 2023, 37(1), 106.
30 Li K, Stroeven P, Stroeven M, et al. Cement and Concrete Research, 2017, 102, 99.
31 Wriedt T. Particle & Particle Systems Characterization, 2002, 19, 256.
32 Liang M F, Feng K, Xiao M Q, et al. Journal of Building Materials, 2020, 23(4), 801 (in Chinese).
梁敏飞, 封坤, 肖明清, 等. 建筑材料学报, 2020, 23(4), 801.
33 Zheng S C, Zheng J J. Concrete, 2011(5), 10 (in Chinese).
郑书成, 郑建军. 混凝土, 2011(5), 10.
34 Zheng J J, Zhou X Z. Journal of Materials in Civil Engineering, 2007, 19, 784.
35 Zhao S W. A dissertation submitted for the degree of soctor of philosophy. Ph. D. Thesis, South China University of Technology, China, 2018 (in Chinese).
赵仕威. 颗粒材料物理力学特性的离散元研究. 博士学位论文, 华南理工大学, 2018.
36 Lin J J, Chen H S, Xu W X. Physical Review E, 2018, 98, 012134.
[1] 张立卿, 边明强, 王云洋, 许开成, 陈梦成, 韩宝国. 自修复混凝土修复性能评估中的若干关键技术与方法研究综述[J]. 材料导报, 2024, 38(9): 22100028-23.
[2] 闫凯, 张倩, 黄彬超, 张鑫. 火灾下活性粉末混凝土梁斜截面承载性能研究[J]. 材料导报, 2024, 38(9): 22110018-8.
[3] 陈爽, 韦丽兰, 陈红梅, 关纪文. 海洋环境下BFRP筋增强珊瑚混凝土柱抗侵蚀性能[J]. 材料导报, 2024, 38(9): 22110088-10.
[4] 魏令港, 黄靓, 曾令宏. 基于改进特征筛选的随机森林算法对锂渣混凝土强度的预测研究[J]. 材料导报, 2024, 38(9): 22050319-6.
[5] 桂岩, 赵爽, 杨自春. 3D打印隔热材料研究进展[J]. 材料导报, 2024, 38(8): 22090104-11.
[6] 申爱琴, 陈荣伟, 郭寅川, 范建航, 戴晓倩, 丑涛. 季冻区纳米SiO2改性SAP路面混凝土的耐磨性[J]. 材料导报, 2024, 38(7): 23010093-6.
[7] 王元战, 杨旻鑫, 龚晓龙, 王禹迟, 郭尚. 考虑地下水位影响的碱渣土地基半埋混凝土内氯离子传输试验研究[J]. 材料导报, 2024, 38(7): 22010226-7.
[8] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[9] 杨志强, 王振, 黄法礼, 易忠来, 蒋金洋. 纳米氧化铝提升海洋环境高速铁路桥梁混凝土结构服役寿命研究[J]. 材料导报, 2024, 38(7): 22060232-8.
[10] 杨淑雁, 徐盼盼, 宋俊杰, 陈小龙. 基于离差最大化-灰色关联的修补混凝土配合比评价[J]. 材料导报, 2024, 38(6): 22040151-7.
[11] 杨简, 李洋, 陈宝春, 徐港, 黄卿维. UHPC直拉试验方法与本构关系研究[J]. 材料导报, 2024, 38(6): 22110263-9.
[12] 姚未来, 刘元雪, 孙涛, 赵宏刚, 穆锐, 雷屹欣. 采用局域共振超材料混凝土提升结构消波防护性能:综述和展望[J]. 材料导报, 2024, 38(5): 23080236-14.
[13] 方新宇, 徐干成, 魏迎奇, 刘彦泉, 袁伟泽, 周俊鹏. 新型高强钢板在结构抗接触爆炸中的应用[J]. 材料导报, 2024, 38(5): 23060206-7.
[14] 程雨竹, 马林建, 王磊, 耿汉生, 高康华, 谭仪忠. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土的动力特性[J]. 材料导报, 2024, 38(5): 23070191-7.
[15] 朱本清, 余红发, 巩旭, 吴成友, 麻海燕. 除冰盐冻融作用下混凝土界面粘结强度与界面过渡区细观力学性能的关系[J]. 材料导报, 2024, 38(5): 22070190-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed