Please wait a minute...
材料导报  2024, Vol. 38 Issue (5): 22070190-7    https://doi.org/10.11896/cldb.22070190
  无机非金属及其复合材料 |
除冰盐冻融作用下混凝土界面粘结强度与界面过渡区细观力学性能的关系
朱本清1, 余红发2,*, 巩旭3, 吴成友1,3,*, 麻海燕2
1 青海大学土木工程学院,西宁 810000
2 南京航空航天大学机场与土木工程系,南京 211106
3 青海省建筑节能材料与工程安全重点实验室,西宁 810000
Relationship Between Bond Strength of Concrete Interface and Meso-mechanical Properties of Interface Transition Zone Under Freezing-thawing Action of Deicing Salt
ZHU Benqing1, YU Hongfa2,*, GONG Xu3, WU Chengyou1,3,*, MA Haiyan2
1 School of Civil Engineering, Qinghai University, Xining 810000, China
2 Department of Airport and Civil Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
3 Qinghai Provincial Key Laboratory of Building Energy-saving Materials and Engineering Safety, Xining 810000, China
下载:  全 文 ( PDF ) ( 10206KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 界面过渡区 (Interfacial transition zone,ITZ)是混凝土内部结构的薄弱环节,也是外界侵蚀性离子向内扩散渗透的通道。通过除冰盐快速冻融实验研究了在除冰盐冻融环境下混凝土界面宏观和细观力学性能的变化规律。结果表明,混凝土粗骨料与砂浆的界面粘结强度和ITZ显微硬度在盐冻过程中均呈现出典型的两段式线性变化,即随着盐冻循环次数增加而增强的初始强化阶段和随着盐冻循环次数增加而降低的后期劣化阶段;初始界面粘结强度或ITZ显微硬度随着水胶比的增大而减小,初始强化速率减慢,后期劣化速率加快,且低水胶比的混凝土有着较好的抗盐冻性能;盐冻过程中混凝土粗骨料和砂浆的界面粘结强度与ITZ显微硬度之间具有较明显的相关性。此研究结果为盐冻环境下混凝土细观力学分析提供了基础数据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱本清
余红发
巩旭
吴成友
麻海燕
关键词:  混凝土  除冰盐  单面冻融  界面过渡区  力学性能  显微硬度    
Abstract: Interfacial transition zone (ITZ) is the concrete internal structure of the weak link, it is also a channel for external erosive ions to diffuse and penetrate inward. In this work, the macroscopic and meso-mechanical properties of concrete interface under freezing-thawing environment of deicing salt were studied by rapid freezing-thawing experiment. The results show that the interface bond strength and ITZ microhardness of concrete aggregate and mortar show a typical two-stage linear change during the salt freezing process. The initial strengthening stage increased with the increase of salt freezing cycles and the later deterioration stage decreased with the increase of salt freezing cycles. The initial interface bond strength or ITZ microhardness will decrease with the increase of water-binder ratio, the initial strengthening rate will slow down, and the later deterioration rate will accelerate. The concrete with lower water-binder ratio has better salt freeze resistance. There is an obvious correlation between the bonding strength and ITZ microhardness of coarse aggregate in concrete during salt-freezing process. It provides basic data for meso-mechanical analysis of concrete in salt-frozen environment.
Key words:  concrete    deicing salt    single side freeze-thaw    interface transition zone    mechanical property    microhardness
出版日期:  2024-03-10      发布日期:  2024-03-18
ZTFLH:  TU528  
基金资助: 国家自然科学基金(21276264);青海省自然科学基金(2022-ZJ-707)
通讯作者:  *余红发,工学博士,教授、博士研究生导师,主要研究方向为水泥混凝土材料与结构耐久性。主持国家自然科学基金项目5项、军方项目2项、省部级项目10余项,发表SCI论文70余篇、EI论文120 余篇、国内重要核心期刊论文30余篇;发明专利授权30余项;出版专著2部,主编行业标准2项。 yuhongfa@nuaa.edu.cn
吴成友,博士,教授、博士研究生导师。从事新型镁基胶凝材料方面的研究,主持国家级科研项目和省部级科研项目10余项,参与国家级和省部级项目等10余项。发表学术论文100余篇,授权国家发明专利20余项。 wuchengyou86@163.com   
作者简介:  朱本清,2020年6月毕业于江西科技师范大学,取得工学学士学位,现为青海大学土木工程学院硕士研究生,在余红发教授的指导下进行研究,目前主要研究领域为结构工程与建筑材料。
引用本文:    
朱本清, 余红发, 巩旭, 吴成友, 麻海燕. 除冰盐冻融作用下混凝土界面粘结强度与界面过渡区细观力学性能的关系[J]. 材料导报, 2024, 38(5): 22070190-7.
ZHU Benqing, YU Hongfa, GONG Xu, WU Chengyou, MA Haiyan. Relationship Between Bond Strength of Concrete Interface and Meso-mechanical Properties of Interface Transition Zone Under Freezing-thawing Action of Deicing Salt. Materials Reports, 2024, 38(5): 22070190-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22070190  或          http://www.mater-rep.com/CN/Y2024/V38/I5/22070190
1 Farran J. Revmater Construct Travel Publics, 1956, 490, 191.
2 Barnes B D, Diamond S, Dolch W L. Cement and Concrete Research, 1978, 8(2), 233.
3 Lin J J, Chen H S, Zhang R L, et al. Materials Characterization, 2019, 154, 335.
4 Luo Z Y, Li W G, Wang K J, et al. Cement and Concrete Research, 2021, 143, 106392.
5 Branch J L, Epps R, Kosson D S. Cement and Concrete Research, 2018, 103, 170.
6 Xiong Y, Yin J. Applied Mechanics and Materials, 2016, 847, 544.
7 Wu K, Long J F, Xu L L, et al. Construction and Building Materials, 2019, 223(30), 1063.
8 Wang M, Xie Y J, Long G C, et al. Construction and Building Materials, 2019, 221(10), 151.
9 Jebli M, Jamin F, Malachanne E, et al. Construction and Building Materials, 2018, 161, 16.
10 Yang X, Shen A, Guo Y, et al. Construction and Building Materials, 2018, 160, 588.
11 Lei B, Li W, Tang Z, et al. Construction and Building Materials, 2018, 163, 840.
12 Shu C. Study on nano-scratch characterization of concrete interfacial transition zone and freeze-thaw durability. Master's Thesis, Shanghai Jiao Tong University, China, 2015(in Chinese).
舒畅. 混凝土界面过渡区和冻融耐久性纳米划痕表征研究. 硕士学位论文, 上海交通大学, 2015.
13 Gao X. ANSYS simulation of concrete compression and freezing-thawing cycle. Master's Thesis, Beijing Jiao Tong University, China, 2010(in Chinese).
郜旭. 混凝土受压和冻融循环过程的 ANSYS 模拟. 硕士学位论文, 北京交通大学, 2010.
14 Sicat E, Gong F, Ueda T, et al. Construction and Building Materials, 2014, 65, 122.
15 Qudoos A, Kim H G, Atta-ur-Rehman, et al. Powder Technology, 2019, 352, 453.
16 Du S, Ge Y, Shi X M. Cement and Concrete Composites, 2019, 104, 103390.
17 Zhu X Y, Gao Y, Dai Z W, et al. Cement and Concrete Research, 2018, 107, 49.
18 Zhang Z Q, Zhang B, Yan P Y. Construction and Building Materials, 2016, 121(15), 483.
19 Yan X C, Jiang L H, Guo M Z, et al. Construction and Building Materials, 2019, 195(20), 231.
20 Lu B, Shi C J, Hou G H. Construction and Building Materials, 2018, 188, 417.
[1] 杨淑雁, 徐盼盼, 宋俊杰, 陈小龙. 基于离差最大化-灰色关联的修补混凝土配合比评价[J]. 材料导报, 2024, 38(6): 22040151-7.
[2] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[3] 杨简, 李洋, 陈宝春, 徐港, 黄卿维. UHPC直拉试验方法与本构关系研究[J]. 材料导报, 2024, 38(6): 22110263-9.
[4] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[5] 王淼, 刘延辉, 刘昭昭. 镍基高温合金不完全动态再结晶组织对力学性能的影响及断裂机制[J]. 材料导报, 2024, 38(6): 21120034-5.
[6] 郑孝源, 任志英, 吴乙万, 白鸿柏, 黄健萌, 谭桂斌. 金属橡胶-聚氨酯复合材料减振性能研究[J]. 材料导报, 2024, 38(6): 22050144-7.
[7] 姚未来, 刘元雪, 孙涛, 赵宏刚, 穆锐, 雷屹欣. 采用局域共振超材料混凝土提升结构消波防护性能:综述和展望[J]. 材料导报, 2024, 38(5): 23080236-14.
[8] 方新宇, 徐干成, 魏迎奇, 刘彦泉, 袁伟泽, 周俊鹏. 新型高强钢板在结构抗接触爆炸中的应用[J]. 材料导报, 2024, 38(5): 23060206-7.
[9] 吴子豪, 苏荣华, 马超, 解帅, 冀志江, 王英翔, 王静. 轻骨料水泥基多功能吸波材料的制备及有限元分析[J]. 材料导报, 2024, 38(5): 23080253-7.
[10] 程雨竹, 马林建, 王磊, 耿汉生, 高康华, 谭仪忠. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土的动力特性[J]. 材料导报, 2024, 38(5): 23070191-7.
[11] 吕炎, 白二雷, 王志航, 夏伟. 低温养护对环氧树脂基砂浆早期性能的影响及机理[J]. 材料导报, 2024, 38(5): 23080222-6.
[12] 褚洪岩, 汤金辉, 王群, 高李, 赵志豪. 采用纳米氧化铝制备高弹性模量超高性能混凝土的可行性研究[J]. 材料导报, 2024, 38(5): 22110073-6.
[13] 陈立俊, 李滢, 陈文浩. 再生微粉与矿物掺合料对混凝土力学性能及微观结构的影响[J]. 材料导报, 2024, 38(5): 22070218-6.
[14] 张学鹏, 张戎令, 杨斌, 肖鹏震, 王小平, 龙朝飞. 冻融-硫酸盐腐蚀耦合作用下早龄期混凝土强度演变及预测模型研究[J]. 材料导报, 2024, 38(5): 22080059-9.
[15] 都思哲, 张淼, 张玉, Selyutina Nina, Smirnov Ivan, 马树娟, 董晓强, 刘元珍. 基于CT图像三维重建的高温下再生混凝土孔隙特征研究[J]. 材料导报, 2024, 38(5): 22060128-11.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed