Please wait a minute...
材料导报  2024, Vol. 38 Issue (4): 22040369-9    https://doi.org/10.11896/cldb.22040369
  金属与金属基复合材料 |
2195铝合金中温变形条件下的静态再结晶机理及动力学
张京京1,2,3,4, 易幼平1,2,3,*, 黄始全1,2,3, 何海林1,2,3, 董非2,3, 王当2,3
1 中南大学机电工程学院,长沙 410083
2 极端服役性能精准制造全国重点实验室,长沙 410083
3 中南大学轻合金研究院,长沙 410083
4 湖南工业职业技术学院机械学院,长沙 410208
Mechanism and Kinetics of Static Recrystallization of 2195 Aluminum Alloy Under Medium Temperature Deformation
ZHANG Jingjing1,2,3,4, YI Youping1,2,3,*, HUANG Shiquan1,2,3, HE Hailin1,2,3, DONG Fei2,3, WANG Dang2,3
1 College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
2 State Key Laboratory of High Performance Complex Manufacturing, Changsha 410083, China
3 Research Institute of Light Alloy, Central South University, Changsha 410083, China
4 Faculty of Mechanical Engineering, Hunan Industry Polytechnic, Changsha 410208, China
下载:  全 文 ( PDF ) ( 18788KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 具有高强度、低密度的2195铝合金是航空航天构件减重的首选材料。2195铝合金在中温热变形过程中常会伴随着静态再结晶的发生,静态再结晶晶粒对材料最终的力学性能有着重要影响。因此,本工作采用热压缩试验、硬度测试、EBSD和XRD测试技术研究了静态再结晶晶粒判别方法,研究了不同变形温度(160~240 ℃)和不同保温时间(0~30 s)对静态再结晶行为和位错演变行为的影响,探明了静态再结晶的演变机理。结果表明,晶粒平均取向差角度分布值(GOS值)小于或等于0.4°的晶粒为静态再结晶晶粒;当变形温度为160~240 ℃、应变速率为0.01 s-1以及变形程度为30%时,随着保温时间t(t<20 s)延长,静态再结晶增加,晶粒尺寸逐渐增大。然而,当变形温度为240 ℃、保温时间大于20 s时,静态再结晶晶粒没有明显增加,仅有略微长大。在静态保温过程中,160 ℃的变形样品比200 ℃的变形样品能够更快、更易形成细小静态再结晶晶粒。基于以上研究规律,建立了2195铝合金中温变形条件下的静态再结晶动力学模型,该模型具有良好的预测效果。本研究对优化2195铝合金热变形和热处理工艺参数具有重要的理论价值和实际意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张京京
易幼平
黄始全
何海林
董非
王当
关键词:  2195铝合金  中低温变形  静态再结晶  再结晶体积分数    
Abstract: 2195 aluminum alloy with high strength/low density is the preferred material for weight reduction of aerospace components. Static recrystallization often occurs during the medium temperature deformation of 2195 aluminum alloy, and static recrystallized grains have an important impact on the final mechanical properties of materials. Therefore, in this work, the effects of different deformation temperatures (160—240 ℃) and holding time (0—30 s) on the static recrystallization behavior were studied by hot compression test, hardness test, EBSD and XRD testing techniques. The dislocation evolution law at different deformation temperatures was analyzed and the mechanism of static recrystallization evolution was explored. The results show that when the grains with GOS value (average grain orientation angle value) less than or equal to 0.4° are recrystallized grains. When the deformation temperature is 160—240 ℃, the strain rate is 0.01 s-1 and the deformation degree is 30%, the size of static recrystallized grains gradually increases with the extension of holding time t (t<20 s). However, when the deformation temperature is 240 ℃, the static recrystallized grains do not increase with the extension of holding time, but only grow up slightly. In the static holding process, 160 ℃ deformation materials is faster than that of 200 ℃ and it is easier to form fine static recrystallized grains. Based on the above rules, the static recrystallization kinetic model of 2195 aluminum alloy during the medium temperature deformation process was established, which has good prediction effect. The results of this study have important theoretical value and practical significance for optimizing parameters of 2195 aluminum alloy during thermal deformation process and heat treatment.
Key words:  2195 aluminum alloy    medium-low temperature deformation    static recrystallization    recrystallization volume fraction
出版日期:  2024-02-25      发布日期:  2024-03-01
ZTFLH:  TG146.2  
基金资助: 国家自然科学基金(U21B6004)
通讯作者:  *易幼平,中南大学机电工程学院教授、博士研究生导师。1988年毕业于中南工业大学,获工学学士学位,1993年毕业于中南工业大学,获工学硕士学位,2000年毕业于中南大学,获工学博士学位。主要从事航空航天轻合金构件成形工艺与模具、热处理工艺和装备等方向的研究。承担完成国家973、04专项、大飞机专项及自科科学基金等20余项课题,在国内外学术期刊上发表论文100余篇,专利40余项。yyp@csu.edu.cn   
作者简介:  张京京,2010年于河北工程大学获得工学学士学位,2014年于中国矿业大学获工学硕士学位。现为中南大学机电工程学院机械工程专业博士研究生,主要从事航空航天铝合金微观组织演变研究。
引用本文:    
张京京, 易幼平, 黄始全, 何海林, 董非, 王当. 2195铝合金中温变形条件下的静态再结晶机理及动力学[J]. 材料导报, 2024, 38(4): 22040369-9.
ZHANG Jingjing, YI Youping, HUANG Shiquan, HE Hailin, DONG Fei, WANG Dang. Mechanism and Kinetics of Static Recrystallization of 2195 Aluminum Alloy Under Medium Temperature Deformation. Materials Reports, 2024, 38(4): 22040369-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22040369  或          https://www.mater-rep.com/CN/Y2024/V38/I4/22040369
1 Du Y, Zhang X, Ye L, et al. Transactions of Nonferrous Metals Society of China, 2006, 16(2), 321 (in Chinese).
杜予晅, 张新明, 叶凌英, 等. 中国有色金属学报, 2006, 16(2), 321.
2 Li J, Liu D, Ning H, et al. Materials Characterization, 2018, 137, 180.
3 Yang Y, Ma F, Hu H B, et al. Materials Science and Engineering A, 2014, 606, 299.
4 Shen K, Timko M, Li Y, et al. Journal of Materials Engineering and Performance, 2019, 28(9), 5625.
5 Li Q, Ning J, Chen L, et al. Journal of Alloys and Compounds, 2020, 848, 156515.
6 Zhang J, Yi Y, Huang S, et al. Materials Science and Engineering A, 2021, 804, 140650.
7 Zhang J, Yi Y, He H, et al. Materials Characterization, 2021, 181, 111492.
8 Falkinger G, Simon P. Procedia Engineering, 2017, 207, 31.
9 Xu X, Li J, Li W, et al. Materials & Design, 2019, 180, 107924.
10 Son H, Cho C, Lee J, et al. Journal of Alloys and Compounds, 2020, 814, 152311.
11 Zhao L Y, Yan H, Chen R S, et al. Scripta Materialia, 2020, 188, 200.
12 Jiang F, Zhang H, Li L, et al. Materials Science and Engineering A, 2012, 552, 269.
13 Xu X, Li J, Li W, et al. Materials & Design, 2019, 180, 107924.
14 Fang J, Huang Y, Yu G, et al. Heat Treatment of Metals, 2019, 44(8), 37 (in Chinese).
方剑, 黄彦, 喻国铭, 等. 金属热处理, 2019, 44(8), 37.
15 Wang G, Tian C, Kou L, et al. Heat Treatment of Metals, 2020, 45(5), 23(in Chinese).
王冠, 田昌龄, 寇琳媛, 等. 金属热处理, 2020, 45(5), 23.
16 Xiao G, Li F, Guo P, et al. Journal of Plasticity Engineering, 2021, 28(7), 131(in Chinese).
肖罡, 李飞龙, 郭鹏程, 等. 塑性工程学报, 2021, 28(7), 131.
17 Lin Y C, Li L, Xia Y. Computational Materials Science, 2011, 50(7), 2038.
18 Xie Z, Gao H, Wang J, et al. Journal of Iron and Steel Research, 2011, 18(2), 45.
19 Ding S, Zhang J, Khan S A, et al. Journal of Materials Science & Technology, 2022, 104, 202.
20 Hadadzadeh A, Mokdad F, Wells M A, et al. Materials Science and Engineering A, 2018, 709, 285.
21 Son H, Lee J, Hyun S. International Journal of Plasticity, 2020, 125, 118.
22 Hu J, Wang H, Bo H, et al. The Chinese Journal of Nonferrous Metals, 2020, 30(11), 2560 (in Chinese).
胡建良, 王欢, 薄宏, 等. 中国有色金属学报, 2020, 30(11), 2560.
23 Jiang J, Jiang F, Zhang M, et al. Journal of Alloys and Compounds, 2020, 831, 154856.
24 Lei B, Zhang J, Deng Y, et al. Material Science, 2015, 5(3), 126(in Chinese).
雷郴祁, 张劲, 邓运来, 等. 材料科学, 2015, 5(3), 126.
25 Roshan M R, Mirzaei M, Jenabali J S A. Journal of Alloys and Compounds, 2013, 569, 111.
26 Zribi Z, Ktari H H, Herbst F, et al. Materials Characterization, 2019, 153, 190.
27 Wang H, Geng H, Zhou D, et al. Materials Science and Engineering A, 2020, 771, 138613.
28 Li H, Zhan L, Huang M, et al. Intermetallics, 2021, 131, 107078.
29 Dini G, Ueji R, Najafizadeh A, et al. Materials Science and Engineering A, 2010, 527(10-11), 2759.
30 Alam M K, Mehdi M, Urbanic R J, et al. Materials Characterization, 2020, 161, 110138.
31 Ding S, Zhang J, Khan S A, et al. Journal of Materials Science & Technology, 2022, 104, 202.
32 Ouyang L, Gui Y, Li Q, et al. Materials Science and Engineering A, 2021, 822, 141664.
33 Zhang H K, Xiao H, Fang X W, et al. Materials & Design, 2020, 193, 108873.
34 Luan Q, Lee J, Zheng J, et al. Computational Materials Science, 2020, 173, 109419.
35 Zhang J, Zheng C, Li D. Acta Metallurgica Sinica, 2018, 31(2), 208.
[1] 万福程, 梁继超, 于爱华, 张嘉振, 路新. 钛涂层制备与后处理工艺及应用研究进展[J]. 材料导报, 2025, 39(2): 24010131-9.
[2] 范航航, 刘飞, 郑亦玮, 白朴存, 崔晓明, 王海波, 靳亮. Li/Sc复合添加对铸态Al-Cu-Mg铝合金微观组织和硬度的影响规律[J]. 材料导报, 2024, 38(24): 23090211-7.
[3] 潘宇, 况帆, 路新. 非连续增强钛基复合材料的研究现状及应用进展[J]. 材料导报, 2024, 38(21): 23080104-10.
[4] 毕广利, 冉吉上, 满宏生, 姜静, 孟帅举, 毕广阔, 王海东, 李元东. 挤压Mg-Y-Ni-Co合金的显微组织、加工性能及塑性变形行为[J]. 材料导报, 2024, 38(21): 23060144-8.
[5] 段逸飞, 王建利, 袁满, 王礼营, 杨忠, 李菲, 田皓. 镁锂合金中LPSO相的研究进展[J]. 材料导报, 2024, 38(20): 23020055-10.
[6] 李雪伍, 杜少盟, 闫佳洋, 石甜. 铝合金超疏水表面制备方法及防腐应用研究现状[J]. 材料导报, 2024, 38(19): 23030276-10.
[7] 冯文彪, 李鑫, 张亚龙. Mg3Sb2合金中Mg空位对电子传输性能的影响[J]. 材料导报, 2024, 38(17): 22110149-7.
[8] 马云路, 杨劼人, 刘泽栋, 陈瑞润. TiAl金属间化合物定向技术研究进展[J]. 材料导报, 2024, 38(15): 23100177-12.
[9] 徐泽, 徐振, 吕哲, 宋华, 陈庆强. Y对6082铝合金铸轧板微观结构及性能的影响[J]. 材料导报, 2024, 38(15): 23080147-6.
[10] 胡鸿彪, 徐帅, 章海明, 金朝阳. 等轴晶AZ80镁合金的全场晶体塑性模拟研究[J]. 材料导报, 2024, 38(9): 22110077-6.
[11] 赵言, 唐建国, 张勇, 郑许, 赵辉. 应变速率对7065铝合金等温压缩软化机制的影响[J]. 材料导报, 2024, 38(8): 22080187-6.
[12] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[13] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[14] 佘欢, 时磊, 董安平. 钛基石墨烯复合材料的分散性、界面结构及力学性能[J]. 材料导报, 2024, 38(5): 23030202-8.
[15] 张健, 朱智浩, 张爽, 董闯. 高Al含量的亚稳β型Ti-Al-Mo-Nb-V系列钛合金的组织与力学性能[J]. 材料导报, 2024, 38(2): 22040297-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed