Please wait a minute...
材料导报  2024, Vol. 38 Issue (21): 23060144-8    https://doi.org/10.11896/cldb.23060144
  金属与金属基复合材料 |
挤压Mg-Y-Ni-Co合金的显微组织、加工性能及塑性变形行为
毕广利1,2,*, 冉吉上1,2, 满宏生3, 姜静1,2, 孟帅举1,2, 毕广阔4, 王海东5, 李元东1,2
1 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
2 兰州理工大学材料科学与工程学院,兰州 730050
3 金川集团精密铜材有限公司,甘肃 金昌 737100
4 吉林建龙钢铁有限责任公司,吉林 吉林 132000
5 长春工程学院应用技术学院,长春 130012
Microstructure, Processing Properties and Plastic Deformation Behavior of an Extruded Mg-Y-Ni-Co Alloy
BI Guangli1,2,*, RAN Jishang1,2, MAN Hongsheng3, JIANG Jing1,2, MENG Shuaiju1,2, BI Guangkuo4, WANG Haidong5, LI Yuandong1,2
1 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
3 Jinchuan Group Precision Copper Co., Ltd., Jinchang 737100, Gansu, China
4 Jilin Jianlong Iron & Steel Co., Ltd., Jilin 132000, Jilin, China
5 School of Applied Technology, Changchun Institute of Technology, Changchun 130012, China
下载:  全 文 ( PDF ) ( 15223KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作通过光学显微镜(OM)、X射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和万能实验机对挤压Mg-2Y-0.5Ni-0.5Co(%,原子分数)合金的显微组织、加工性能和塑性变形行为进行了研究。挤压合金的显微组织主要由α-Mg、沿挤压方向分布的片层状和细小块状18R-LPSO相、MgY(Co,Ni)4相以及晶粒内细条纹状的14H-LPSO相组成。拉伸测试结果显示,挤压合金具有良好的室温塑性,断裂延伸率均高于15%。随着温度的升高和应变速率的降低,合金的拉伸强度降低,而塑性增强。合金在300 ℃、1×10-3 s-1和1×10-4 s-1应变速率下断裂延伸率分别为117.87%和143.9%,具有准超塑性。通过构建的热加工图谱,优化出合金的稳定加工区间为温度275~300 ℃、应变速率10-4~10-3 s-1。挤压合金的变形行为随温度和应变速率的变化而改变,在低温(室温(RT)到200 ℃)和不同应变速率下,合金的变形机制以位错滑移为主;在高温(300 ℃)和低应变速率(1×10-4 s-1和1×10-3 s-1)下,合金的变形机制为晶界滑移协调的位错滑移。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
毕广利
冉吉上
满宏生
姜静
孟帅举
毕广阔
王海东
李元东
关键词:  挤压Mg-Y-Ni-Co合金  显微组织  加工性能  塑性变形    
Abstract: The microstructure, processing properties and plastic deformation behavior of an extruded Mg-2Y-0.5Ni-0.5Co (at%) alloy were investigated by optical microscopy (OM), X-ray diffractometer (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and universal experiment machine. The microstructure of the extruded alloy mainly consisted of α-Mg, lamellar and blocky 18R-LPSO phase distributed along the extrusion direction, MgY(Co,Ni)4 phase, and fine strip-like 14H-LPSO phase in the grain interior. Tensile test results showed that the extruded alloy had good room temperature plasticity and its elongation to failure was higher than 15%. With increasing temperature and decreasing strain rate, the tensile strengths of the alloy decreased, while the plasticity increased. The alloy exhibited quasi-super plasticity with elongation to failure of 117.87% and 143.9% at 300 ℃ under the strain rates of 1×10-4 s-3 and 1×10-4 s-1, respectively. The constructed thermal processing profile was optimized for the stable processing interval of the extruded alloy: 275—300 ℃ with strain rates from 1×10-4 s-1 to 1×10-3 s-1. The deformation behavior of the extruded alloy varied with temperature and strain rate. At low temperatures (RT—200 ℃) and different strain rates, the deformation mechanism of the alloy was dominated by dislocation slip. At high temperature (300 ℃) and low strain rates (1×10-4 s-1 and 1×10-3 s-1), the deformation mechanism of the alloy was dislocation slip coordinated by grain boundary slip.
Key words:  extruded Mg-Y-Ni-Co alloy    microstructure    processing property    deformation behavior
出版日期:  2024-11-10      发布日期:  2024-11-11
ZTFLH:  TG146.2  
基金资助: 国家自然科学基金(52261027; 51961021; 52001152);材料力学行为国家重点实验室开放项目(20192102);本科创新创业培养计划(DC2022017; DC2022025; DC2022027)
通讯作者:  *毕广利,兰州理工大学材料科学与工程学院教授、博士研究生导师。2001—2008年分别获长春理工大学学士及硕士学位,硕士期间在中国科学院长春应用化学研究所联合培养,2011年获吉林大学材料学博士学位。现任中国机械工程学会热处理分会理事、甘肃省机械工程学会材料热处理与表面工程分会副理事长、材料科学与工程学院金属材料工程专业系主任。主要从事新型镁稀土合金制备、组织性能及变形机理和半固态镁铝合金开发与应用等科研工作。主持国家自然科学基金3项,参与国家重点研发计划子课题1项、甘肃省重点研发计划1项。发表30余篇A2或T1 论文,申请发明专利3件,授权发明及实用新型专利4件。glbi@163.com   
引用本文:    
毕广利, 冉吉上, 满宏生, 姜静, 孟帅举, 毕广阔, 王海东, 李元东. 挤压Mg-Y-Ni-Co合金的显微组织、加工性能及塑性变形行为[J]. 材料导报, 2024, 38(21): 23060144-8.
BI Guangli, RAN Jishang, MAN Hongsheng, JIANG Jing, MENG Shuaiju, BI Guangkuo, WANG Haidong, LI Yuandong. Microstructure, Processing Properties and Plastic Deformation Behavior of an Extruded Mg-Y-Ni-Co Alloy. Materials Reports, 2024, 38(21): 23060144-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23060144  或          http://www.mater-rep.com/CN/Y2024/V38/I21/23060144
1 Chaman-Ara M, Ebrahimi G R, Ezatpour H R. The Chinese Journal of Nonferrous Metals, 2018, 28(4), 629.
2 Wang J, Zhu G M, Wang L Y, et al. Journal of Materials Science & Technology, 2021, 84(25), 27.
3 Somekawa H, Kinoshita A, Kato A. Materials Science & Engineering A, 2018, 732, 21.
4 Janik V, Yin D D, Wang Q D, et al. Materials Science & Engineering A, 2011, 528(7-8), 3105.
5 Liu X B, Chen R S, Han E H. Journal of Alloys and Compounds, 2008,465(1-2), 232.
6 Lin L, Chen L J, Liu Z. Journal of Materials Science, 2008, 43(13), 4493.
7 Luo Z P, Zhang S Q, Tang Y L, et al. Journal of Alloys and Compounds, 1994, 209(1-2), 275.
8 Inoue A, Kawaura Y, Matsushita M, et al. Journal of Materials Research, 2001, 16(07), 1894.
9 Bi G L, Zhang N M, Jiang J, et al. The Chinese Journal of Nonferrous Metals, 2022, 32(3), 731 (in Chinese).
毕广利, 张妞明, 姜静, 等. 中国有色金属学报, 2022, 32(3), 731.
10 Itoi T, Takahashi K, Moryama H, et al. Scripta Materialia, 2008, 59(10), 1155.
11 Tong L B, Li X H, Zhang H J. Materials Science & Engineering A, 2013, 563, 177.
12 Mi S B, Jin Q Q. Scripta Materialia, 2013, 68(8), 635.
13 Wang L S, Jiang J H, Saleh B, et al. Acta Metallurgica Sinica(English Letters), 2020, 33(9),1180.
14 Alok S, Somekawa H, Mukai T. Materials Science & Engineering A, 2011, 528(21), 6647.
15 Akihisa I, Yoshihito K, Mitsuhide M, et al. Journal of Materials Research, 2001, 16(7), 1894.
16 Jin S, Zhang D, Lu X P, et al. Journal of Materials Science & Technology, 2020, 47, 190.
17 Wang J F, Gao S Q, Liu X Y, et al. Journal of Magnesium and Alloys, 2020, 8(1), 127.
18 Zhou Y C, Luo Q, Jiang B, et al. Scripta Materialia, 2022, 208, 114345.
19 Zhang R Q, Wang J F, Huang S, et al. Journal of Magnesium and Alloys, 2017, 5(3), 355.
20 Wu S Z, Chi Y Q, Xie W C, et al. Materials Science & Engineering A, 2022, 846, 143292.
21 Liu C, Yang X H, Peng J C, et al. Scripta Materialia, 2023, 226, 115264.
22 Peng Z Z, Jin Q Q, Shao X H, et al. Materials Characterization, 2019, 151,553.
23 Shi B Q, Zhao L Y, Chen D C, et al. Materials Science & Engineering A, 2019, 772,138786.
24 Xu Z M, Chen X R, Yao B, et al. JOM, 2019, 71(11), 4125.
25 Bi G L, Wang Y S, Jiang J, et al.Journal of Alloys and Compounds, 2021, 881, 160577.
26 Bi G L, Man H S, Jiang J, et al.Journal of Materials Research and Technology, 2022, 20, 590.
27 Bi G L, Man H S, Jiang J, et al. The Chinese Journal of Nonferrous Metals, 2023, 33(4), 1011(in Chinese).
毕广利, 满宏生, 姜静, 等.中国有色金属学报, 2023, 33(4), 1011.
28 Jin Q Q, Mi S B. Journal of Alloys and Compounds, 2014, 582, 130.
29 Jiang M, Zhang S, Bi Y D, et al. Intermetallics, 2015, 57, 127.
30 Yu L P, Chen X, Wang S H, et al. Journal of Materials Research, 2019, 34(20), 3545.
31 Hagihara K, Kinoshita A, Sugino Y, et al. Acta Materialia,2010, 58(19), 6282.
32 He S Y, Yang S Y. Chinese Journal of Rare Metals, 2021, 45(3), 257(in Chinese).
何舒阳, 杨素媛.稀有金属, 2021, 45(3), 257.
33 Zhu S M, Nie J F. Scripta Materialia, 2004, 50(1), 51.
34 Chapuis A, Liu Q. Journal of Magnesium and Alloys, 2019, 7(3), 433.
35 Jain V, Mishra R S, Gouthama. Journal of Materials Science, 2012, 48(6), 2635.
36 Alizadeh R, Mahmudi R, Ngan A H W, et al. Materials Science & Engineering A, 2016, 651, 786.
37 Kwak T Y, Kim W J. Journal of Materials Science & Technology, 2017, 33(9), 919.
38 Kula A, Jia X, Mishra R K, et al. International Journal of Plasticity, 2017, 92, 96.
39 Mcqueen H J, Ryan N D. Materials Science & Engineering A, 2002, 322(1), 43.
40 Langdon T G. Acta Metallurgica et Materialia, 1994, 42(7), 2437.
41 Jung I H, Sanjrai M, Kim J, et al. Scripta Materialia, 2015, 102, 1.
42 Prasad Y, Gegel H L, Doraivelu S M, et al. Metallurgical Transactions A, 1984, 15(10), 1883.
43 Murty S V S N, Rao B N, Kashyap B P. Journal of Materials Science, 2002, 37(6),1197.
[1] 刘倩, 卢秉恒. 金属增材制造质量控制及复合制造技术研究现状[J]. 材料导报, 2024, 38(9): 22100064-8.
[2] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[3] 段逸飞, 王建利, 袁满, 王礼营, 杨忠, 李菲, 田皓. 镁锂合金中LPSO相的研究进展[J]. 材料导报, 2024, 38(20): 23020055-10.
[4] 张健, 朱智浩, 张爽, 董闯. 高Al含量的亚稳β型Ti-Al-Mo-Nb-V系列钛合金的组织与力学性能[J]. 材料导报, 2024, 38(2): 22040297-6.
[5] 吴长军, 朱付成, 王权, 彭浩平, 刘亚, 苏旭平. 600~1 000 ℃退火处理对FCC型CoxFeMnNi3-x合金组织演变及耐蚀性的影响[J]. 材料导报, 2024, 38(18): 23080153-7.
[6] 郑勇, 邱绍宇, 魏连峰, 杨灿湘, 王宇, 田大容, 姚力夫. 高压条件下锆及其合金ω相变研究进展[J]. 材料导报, 2024, 38(17): 23020025-7.
[7] 王婷, 胡斌, 王文琴, 王非凡. 微弧火花沉积Zr基非晶涂层的组织及性能[J]. 材料导报, 2024, 38(16): 22090308-6.
[8] 肖华强, 尹星贵, 冯进宇, 肖易, 龚玉婷. TC4钛合金表面激光熔覆Ti-Mo-Al-B复合涂层的组织及摩擦磨损性能[J]. 材料导报, 2024, 38(12): 22080075-6.
[9] 俞伟元, 董鹏飞, 吴保磊. 超音速火焰喷涂氧燃比对铁基非晶涂层性能的影响[J]. 材料导报, 2024, 38(12): 22120200-6.
[10] 王虎, 武少杰, 董翼纶, 程方杰. 热输入对埋弧增材厚壁构件微观组织与冲击韧性的影响[J]. 材料导报, 2024, 38(11): 22120217-5.
[11] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[12] 聂浩, 徐洋, 柯黎明, 邢丽. 转速对厚板铝/镁异种材料搅拌摩擦焊摩擦产热及界面组织的影响[J]. 材料导报, 2023, 37(8): 21090144-6.
[13] 黄仁君, 闫二虎, 陈运灿, 葛晓宇, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe合金的组织和耐腐蚀性能及置氢前后的显微硬度研究[J]. 材料导报, 2023, 37(7): 21070095-7.
[14] 于以标, 陈乐平, 徐勇, 袁源平, 方森鹏. 2060-T8E30铝锂合金的高温拉伸变形行为及显微组织研究[J]. 材料导报, 2023, 37(6): 21090209-6.
[15] 林方敏, 邢梅, 唐立志, 武学俊, 章小峰, 黄贞益. Fe-Mn-Al-C系低密度钢及其强韧化机制研究进展[J]. 材料导报, 2023, 37(5): 21050094-8.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed