Please wait a minute...
材料导报  2024, Vol. 38 Issue (2): 22040297-6    https://doi.org/10.11896/cldb.22040297
  金属与金属基复合材料 |
高Al含量的亚稳β型Ti-Al-Mo-Nb-V系列钛合金的组织与力学性能
张健1, 朱智浩1, 张爽2, 董闯1,*
1 大连理工大学三束材料改性教育部重点实验室,辽宁 大连 116024
2 大连交通大学材料科学与工程学院,辽宁 大连 116028
Microstructure and Mechanical Properties of Ti-Al-Mo-Nb-V Metastable β-type Alloys Alloying with High Al Content
ZHANG Jian1, ZHU Zhihao1, ZHANG Shuang2, DONG Chuang1,*
1 Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology) Ministry of Education, Dalian 116024, Liao-ning, China
2 School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, Liaoning, China
下载:  全 文 ( PDF ) ( 8375KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 目前,亚稳β钛合金的成分朝着更高Al含量和更高β稳定元素含量的方向发展,本工作基于典型亚稳β钛合金β-21S和TB18的成分设计思路,添加了更高含量的Al元素,同时添加了Mo、Nb、V三种β稳定元素,设计并利用铜模吸铸法制备了高Al含量的亚稳β型Ti-Al-(Mo,Nb,V)系列钛合金。结果表明,Ti-6.5Al-1.5V-11.5Mo-2.8Nb合金在吸铸态下的β相结构达到临界稳定状态。此时,该合金的拉伸屈服强度为623 MPa,延伸率为16.6%,其屈服强度略低于对标合金TB18,但延伸率明显高于同系列合金和TB18合金,具有最佳的综合力学性能。此外,该合金液固温区为31 ℃,在同系列合金中最低,且明显低于对标合金TB18的液固温区238 ℃。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张健
朱智浩
张爽
董闯
关键词:  亚稳β钛合金  高Al含量  显微组织  力学性能    
Abstract: At present, the composition of metastable β-titanium alloys is developing towards higher β-stable elements and higher Al content. In this work, Ti-Al-(Mo, Nb, V) metastable β-type alloys were first designed via higher Al content and Mo, Nb and V co-alloying after analyzing the composition of typical metastable β-Ti β-21S and TB18, and prepared by copper-mold suction-casting method. It was found that Ti-6.5Al-1.5V-11.5Mo-2.8Nb alloy possesses a critical stable β-phase structure at as-cast state. At this time, this alloy shows excellent tensile yield strength of 623 MPa and elongation of 16.6%, with the best comprehensive mechanical properties, of which its yield strength is slightly lower than that of the reference TB18 alloy, but the elongation is significantly higher than those of same alloy series and TB18 alloy. In addition, its solidification ranges is 31 ℃, which is lower than that of the same series of alloys, particularly much below the 238 ℃ of TB18 alloy.
Key words:  metastable β-titanium alloy    high Al content    microstructure    mechanical property
出版日期:  2024-01-25      发布日期:  2024-01-26
ZTFLH:  TG146.2  
基金资助: 大连市科技创新基金重点学科重大课题(2020JJ25CY004);军委科技委2020年重点基础研究项目(2020JCJQZD165)
通讯作者:  *董闯,大连理工大学材料科学与工程学院教授、博士研究生导师。1988年7月本硕毕业于大连理工大学材料科学与工程学院,1991年7月在法国洛林国立理工大学材料学院取得博士学位,1992—1994年分别在法国南锡矿业学院和中国科学院北京电子显微镜重点实验室进行博士后研究工作。先后获得国家教委科技进步一等奖、辽宁省青年科技拔尖人才、国家百千万人才工程、大连市优秀专家、国务院颁发的政府特殊津贴、中国青年科技奖、辽宁省十大杰出青年、中国大陆高引用SCI论文奖、辽宁省青年学科带头人、教育部长江奖励计划特聘教授等。主要从事载能束材料改性、准晶及非晶材料、合金相成分设计、材料微结构的研究。近年来,著有《准晶材料》(1998,国防工业出版社),发表论文 100 余篇,SCI引用总次数为530,单篇最高为94次,申请专利4项。dong@dlut.edu.cn   
作者简介:  张健,2020年6月于中国地质大学(武汉)获得工学学士学位。现为大连理工大学材料科学与工程学院硕士研究生,在董闯教授的指导下进行研究。目前主要研究领域为基于团簇加连接原子模型的β-Ti合金成分设计。
引用本文:    
张健, 朱智浩, 张爽, 董闯. 高Al含量的亚稳β型Ti-Al-Mo-Nb-V系列钛合金的组织与力学性能[J]. 材料导报, 2024, 38(2): 22040297-6.
ZHANG Jian, ZHU Zhihao, ZHANG Shuang, DONG Chuang. Microstructure and Mechanical Properties of Ti-Al-Mo-Nb-V Metastable β-type Alloys Alloying with High Al Content. Materials Reports, 2024, 38(2): 22040297-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040297  或          http://www.mater-rep.com/CN/Y2024/V38/I2/22040297
1 Xin S W, Zhou W, Li Q, et al. Materials China, 2021, 40(6), 441(in Chinese).
辛社伟, 周伟, 李倩, 等. 中国材料进展, 2021, 40(6), 441.
2 Gao Y S, Li S Q, Zhang G, et al. Special Casting & Nonferrous Alloys, 2014, 34(10), 1111(in Chinese).
高玉社, 李少强, 张钢, 等. 特种铸造及有色合金, 2014, 34(10), 1111.
3 Li S Q, Gong Z P, Li H, et al. Rare Metal Materials and Engineering, 2020, 49(9), 3045(in Chinese).
李少强, 弓站朋, 李辉, 等. 稀有金属材料与工程, 2020, 49(9), 3045.
4 Lu B H. China Mechanical Engineering, 2020, 31(1), 19(in Chinese).
卢秉恒. 中国机械工程, 2020, 31(1), 19.
5 Wang F, Lei L M, Fu X, et al. Materials Science and Engineering, 2020, 782, 139284. 1.
6 Thmas J, Mogonye J E, Mantri S A, et al. Additive Manufacturing, 2020, 33, 101132.
7 Zhang Y, Wang H J, Chen S M, et al. Heat Treatment of Metals, 2022, 47(3), 124(in Chinese).
张颖, 王浩军, 陈素明, 等. 金属热处理, 2022, 47(3), 124.
8 Zhang Y, Li M X, Hu S S, et al. Special Casting & Nonferrous Alloy, 2022, 42(4), 436(in Chinese).
张颖, 李明祥, 胡生双, 等. 特种铸造及有色合金, 2022, 42(4), 436.
9 Vrancken B, Thijs L, Kruth J P, et al. Acta Materialia, 2014, 68, 150.
10 Liu C M, Tian X J, Tang H B, et al. Journal of Alloys and Compounds, 2013, 572, 17.
11 Mantri S A, Choudhuri D, Alam T, et al. Scripta Materialia, 2018, 154, 139.
12 Cao S, Zhang S Z, Liu J R, et al. Computational Materials Science, 2021, 197, 110620.
13 Jiang B B. Composition design approach based on cluster structure model of multi-component Ti alloys and their properties. Ph. D. Thesis, Dalian University of Technology, China, 2019(in Chinese).
姜贝贝. 基于团簇结构模型的多元Ti合金成分设计方法和性能研究. 博士学位论文, 大连理工大学, 2019.
14 Dong C, Wang Z J, Zhang S, et al. International Materials Reviews, 2019, 65, 286.
15 Pual J. Joumal of Metals, 1994, 64(7), 16.
16 Bania P J. ISIJ International, 1991, 31(8), 840.
17 Leyens C, Peters M, Chen Z H, et al. Titanium and titanium alloy, Chemical Industry Press, China, 2005, pp. 14(in Chinese).
莱茵斯, 皮特尔斯, 陈振华, 等. 钛与钛合金, 化学工业出版社, 2005, pp. 14.
18 Kolli R P, Devaraj A. Metals, 2018, 8(7), 506.
19 Liu Z D, Du Z X, Jiang H Y, et al. Progress in Natural Science:Materials International, 2021, 31(5), 731.
20 Qi L C, Zhang K C, Xiao W L, et al. Journal of Aeronautical Materials, 2020, 40(3), 110(in Chinese).
齐立春, 张凯超, 肖文龙, 等. 航空材料学报, 2020, 40(3), 110.
21 Guo S, Shang Y, Zhang J S. Intermetallics, 2017, 86, 20.
22 Liu J P, Wang D Y, Hao Y L. Scientific Reports, 2013, 3(1), 2156.
23 Zhu Z H, Liu T Y, Dong C, et al. Journal of Materials Research and Technology, 2022, 18, 2582.
24 Tayyeb A, Wang L, Cheng X W, et al. Journal of Materials Science & Technology, 2021, 78, 238.
25 Wang W T, Li P, Kou W J, et al. Rare Metal Materials and Enginee-ring, 2020, 49(5), 1707(in Chinese).
王文婷, 李沛, 寇文娟, 等. 稀有金属材料与工程, 2020, 49(5), 1707.
26 Liu T Y, Zhang S, Wang Q, et al. Science China Technological Sciences, 2021, 64, 1732.
[1] 徐宁, 杨恒, 熊传胜, 崔征, 蒋鹏, 刘璨. 钢筋混凝土环境中负载型阻锈剂的研究进展[J]. 材料导报, 2024, 38(2): 22050296-14.
[2] 陈恩光, 苏新清, 薛松柏, 陈旭东, 傅仁利, 张笑天, 程波, 王长虹, 王明伟. Ag-CuO-NiO-LiAlSiO4复合钎料空气反应钎焊GH3128/Al2O3接头组织及性能[J]. 材料导报, 2024, 38(2): 22090003-6.
[3] 周后明, 周金虎, 刘刚, 陈皓月. 金属间化合物MoSi2协同SiC晶须增韧Si3N4陶瓷刀具的制备及切削性能[J]. 材料导报, 2024, 38(2): 22040020-5.
[4] 舒林森, 张粲东, 于鹤龙, 张朝铭. 激光熔覆原位Ti-C-B-Al复合涂层的结构特征与力学性能[J]. 材料导报, 2024, 38(2): 22080162-5.
[5] 况栋梁, 马小军, 马晓燕, 袁斌, 侯俊鹏, 蔡军. 废机油残留物再生剂对老化沥青动态力学性能和组分迁移的影响[J]. 材料导报, 2024, 38(2): 22050182-8.
[6] 李北星, 陈鹏博, 殷实, 易浩. 附加用水量对再生砂混凝土工作性和力学性能的影响[J]. 材料导报, 2024, 38(1): 22070217-7.
[7] 王述红, 贡藩, 尹宏, 修占国. 聚酯纤维泡沫混凝土力学性能及孔结构研究[J]. 材料导报, 2024, 38(1): 22060231-8.
[8] 冯振宇, 张宏宇, 马佳威, 陈琨, 周良道, 沈培良, 陈向明. 晶体塑性有限元方法在增材制造金属材料力学性能研究中的应用[J]. 材料导报, 2024, 38(1): 22070235-10.
[9] 刘亚豪, 王源升, 杨雪, 黄威, 李科, 王轩. 自修复聚氨酯材料的研究进展[J]. 材料导报, 2024, 38(1): 22050280-10.
[10] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[11] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[12] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[13] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[14] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[15] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed