Please wait a minute...
材料导报  2024, Vol. 38 Issue (17): 22110149-7    https://doi.org/10.11896/cldb.22110149
  金属与金属基复合材料 |
Mg3Sb2合金中Mg空位对电子传输性能的影响
冯文彪1, 李鑫2,*, 张亚龙2
1 山西中电科新能源技术有限公司,太原 030000
2 西安航空学院材料工程学院,西安 710077
Effect of Mg Vacancy on Electronic Transport Properties of Mg3Sb2 Alloy
FENG Wenbiao1, LI Xin2,*, ZHANG Yalong2
1 CETC New Energy Technology Co., Ltd., Taiyuan 030000, China
2 School of Materials Engineering, Xi'an Aeronautical University, Xi'an 710077, China
下载:  全 文 ( PDF ) ( 18799KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 Mg3Sb2基合金因具有极低的本征晶格热导率而成为极具潜质的中温区热电材料之一,但其较低的载流子浓度和电导率是目前亟待解决的问题,除了常用的元素掺杂外,有望通过引入Mg空位来提高合金的p型传输倾向,从而成为解决这一问题的有效方法。基于此,本工作采用第一性原理计算方法对不同位置Mg的空位形成能和电子结构等参数进行了计算。由结果可知,Mg1位的Mg2+阳离子空位更容易形成,且空位含量最高可达0.05,Mg空位的存在也有利于禁带中的Fermi能级向价带方向偏移,使得载流子浓度大幅提升。利用定向凝固方法制备了相同成分的合金并对其热电性能参数进行了测试,所得的电子传输性能变化趋势与计算预测结果一致,Mg2.975Sb2合金的电导率和功率因子最大值分别为110 S·cm-1和1.89 W·m-1·K-1。此外,Mg空位的存在导致的点缺陷也有利于声子的散射和晶格热导率的降低,使得780 K时Mg2.975Sb2合金的最高热电优值达到0.49。本工作通过对Mg空位的调控使p型Mg3Sb2合金的电子传输性能得到提升,同时也为此类合金的热电性能优化提供了新的思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冯文彪
李鑫
张亚龙
关键词:  第一性原理计算  Mg3Sb2合金  Mg空位  热电性能    
Abstract: Mg3Sb2-based alloy has become one of the most potential medium temperature thermoelectric materials due to its extremely low lattice thermal conductivity. However, its low carrier concentration and electrical conductivity are urgent problems to be solved. In addition to the doping, appearance of Mg vacancy is conducive to the p-type conduction tendency. Therefore, it is excepted to optimize the electronic transport performance by introducing Mg vacancy. Based on this, defect formation energy and electronic structures of Mg3Sb2 alloys with different sites and contents of Mg vacancy were calculated by use of first-principles calculations. It is determined that Mg1 sites tend to form a vacancy, and the maximum content of Mg vacancy is 0.05. The presence of Mg vacancy is also conducive to the shifting of the Fermi level to the valence band, which greatly increases the carrier concentration. Mg3Sb2 alloys with different contents of Mg vacancy were prepared by directional solidification method, and their thermoelectric property parameters were tested. The variation trend of electronic transport properties was consistent with the predicted results. The top values of electrical conductivity and power factor for Mg2.975Sb2 alloy are 110 S·cm-1 and 1.89 W·m-1·K-1, respectively. In addition, point defects caused by Mg vacancy are also conducive to the scattering of phonon and the reduction of lattice thermal conductivity. This results in an optimized figure of merit value of 0.49 for Mg2.975Sb2 alloy at T = 780 K. In this work, electronic transport property parameters of p-type Mg3Sb2 alloys were improved by regulating the Mg vacancy, and a new idea is provided for the thermoelectric performance optimization of Mg3Sb2-based alloys.
Key words:  first principle calculation    Mg3Sb2 alloy    Mg vacancy    thermoelectric property
出版日期:  2024-09-10      发布日期:  2024-09-30
ZTFLH:  TG146.2+2  
基金资助: 国家自然科学基金委青年项目(51904219)
通讯作者:  *李鑫,2018年6月毕业于西北工业大学材料学院,获得工学博士学位。现为西安航空学院材料工程学院教授。目前主要研究领域为定向凝固、热电材料和第一性原理计算。在国内外知名期刊发表SCI、EI检索论文30余篇,其中第一、通信作者20篇。lixin005@xaau.edu.cn   
作者简介:  冯文彪,2017年7月毕业于东北大学软件学院,获得工程硕士学位。现为山西中电科新能源技术有限公司工程师。目前主要研究领域为光电、热电转换材料以及器件制备和性能优化。
引用本文:    
冯文彪, 李鑫, 张亚龙. Mg3Sb2合金中Mg空位对电子传输性能的影响[J]. 材料导报, 2024, 38(17): 22110149-7.
FENG Wenbiao, LI Xin, ZHANG Yalong. Effect of Mg Vacancy on Electronic Transport Properties of Mg3Sb2 Alloy. Materials Reports, 2024, 38(17): 22110149-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22110149  或          http://www.mater-rep.com/CN/Y2024/V38/I17/22110149
1 Bahrami A, Schierning G, Nielsch K. Advanced Energy Materials, 2020, 10(19), 1904159.
2 Chu J, Huang J, Liu R H, et al. Nature Communications, 2020, 11(1), 2723.
3 Mao J, Chen G, Ren Z F. Nature Materials, 2021, 20(4), 454.
4 Chen L C, Chen P Q, Li W J, et al. Nature Materials, 2019, 18(12), 1321.
5 Iversen B B. Nature Materials, 2021, 20(10), 1309.
6 Zhong Y, Tang J, Liu H T, et al. ACS Applied Materials & Interfaces, 2020, 12(44), 49323.
7 Zhao Y W, Liu Y, Ma H Y, et al. Ceramics International, 2021, 47(20), 28268.
8 Chong X Y, Guan P W, Wang Y, et al. ACS Applied Energy Materials, 2018, 1(11), 6600.
9 Rudradawong C, Sukwisute P, Limsuwan P, et al. Journal of Alloys and Compounds, 2021, 879, 160513.
10 Zhang F, Chen C, Yao H H, et al. Advanced Functional Materials, 2019, 30(5), 1906143.
11 Shu R, Zhou Y C, Wang Q, et al. Advanced Functional Materials, 2019, 29(4), 1807235.
12 Chen Y Q, Wang C, Ma Z, et al. Current Applied Physics, 2021, 21, 25.
13 Zhang J W, Song L R, Pedersen S H, et al. Nature Communications, 2017, 8(1), 13901.
14 Mo X B, Liao J S, Yuan G C, et al. Journal of Magnesium and Alloys, 2021, 10(4), 1024.
15 Wang Y Z, Zhang X, Wang Y, et al. Physica Status Solidi (a), 2019, 216(6), 1800811.
16 Wang H, Chen J, Lu T Q, et al. Chinese Physics B, 2018, 27(4), 47212.
17 Shuai J, Wang Y M, Kim H S, et al. Acta Materialia, 2015, 93, 187.
18 Tiadi M, Battabyal M, Jain P K, et al. Sustainable Energy & Fuels, 2021, 5, 4104.
19 Bhardwaj A, Misra D K. RSC Advances, 2014, 4(65), 34552.
20 Mao J, Zhu H T, Ding Z W, et al. Science, 2019, 365(6452), 495.
21 Chen X X, Wu H J, Cui J, et al. Nano Energy, 2018, 52, 246.
22 Shuai J, Ge B H, Mao J, et al. Journal of the American Chemical Society, 2018, 140(5), 1910.
23 Ohno S, Imasato K, Anand S, et al. Joule, 2018, 2(1), 141.
24 Tan X J, Liu G Q, Hu H Y, et al. Journal of Materials Chemistry A, 2019, 7(15), 8922.
25 Li X, Xie H, Wei X, et al. Materials Reports, 2020, 34(9), 18098(in Chinese).
李鑫, 谢辉, 魏鑫, 等. 材料导报, 2020, 34(9), 18098.
26 Vanderbilt D. Physical Review B Condensed Matterials, 1990, 41(11), 7892.
27 Schwarz K, Blaha P. Computational Materials Science, 2003, 28(2), 259.
28 Scheidemantel T J, Ambrosch-Draxl C, Thonhauser T, et al. Physical Review B, 2003, 68(12), 125210.
29 Madsen G K H, Singh D J. Computer Physics Communications, 2006, 175(1), 67.
30 Li X, Li S M, Feng S K, et al. Journal of Electronic Materials, 2016, 45(6), 2895.
31 Li X, Xie H, Yang B, et al. Journal of Materials Science:Materials in Electronic, 2020, 31, 9773.
32 Bhardwaj A, Rajput A, Shukla A K, et al. RSC Advances, 2013, 3(22), 8504.
33 Mao J, Liu Z H, Zhou J W, et al. Advances in Physics, 2018, 67(2), 69.
34 Li X, Li S M, Feng S K, et al. Intermetallics, 2017, 81, 26.
35 Snyder G J, Toberer E S. Nature Materials, 2008, 7(2), 105.
36 Liu W, Chi H, Sun H, et al. Physical Chemistry Chemical Physics, 2014, 16(15), 6893.
37 Song L R, Zhang J W, Iversen B B. Journal of Materials Chemistry A, 2017, 5(10), 1.
38 Shi X M, Zhang X Y, Ganose A, et al. Materials Today Physics, 2021, 18, 100362.
[1] 彭超, 赵勇, 张芳, 龙旭, 林金保, 常超. TixNbMoTaW系高熵合金性能的第一性原理计算[J]. 材料导报, 2024, 38(15): 23040229-8.
[2] 张琦祥, 苑峻豪, 李震, 李文杰, 孙丹, 王清, 董闯. 基于第一性原理计算的固溶体合金集成学习设计方法[J]. 材料导报, 2024, 38(13): 23030089-8.
[3] 刘洪亮, 郭志迎, 袁晓峰, 朱尊伟, 高倩倩, 张忻. 熔体旋甩工艺对Mg2(Si0.4Sn0.6)Sb0.015固溶体微结构和热电性能的影响研究[J]. 材料导报, 2024, 38(12): 22090010-5.
[4] 余瑞, 张永安, 李亚楠, 李锡武, 李志辉, 闫丽珍, 温凯, 熊柏青. Zn对Al-Mg-Si合金时效析出相稳定性影响的第一性原理研究[J]. 材料导报, 2023, 37(4): 21040034-5.
[5] 才文文, 贺勇, 张敏, 史俊杰. AZrX3(A=Ba, Ca;X=S, Se,Te)钙钛矿结构及光电特性的第一性原理研究[J]. 材料导报, 2023, 37(2): 21070076-6.
[6] 徐晨辉, 孔栋, 况志祥, 陈卓, 马燕, 邹富祥, 陈昕, 胡晓明, 冯波, 樊希安. 高性能新型Mg3(Sb,Bi)2基热电材料的发展现状[J]. 材料导报, 2023, 37(13): 21100209-10.
[7] 张鹏军, 陈国祥, 安国, 刘迎港. 铁修饰二碲化钼吸附氮化物的气敏特性研究[J]. 材料导报, 2023, 37(12): 21110219-6.
[8] 王勇, 张微微, 李永存, 张旭昀, 孙丽丽. 第一性原理计算在电化学腐蚀中的应用研究进展[J]. 材料导报, 2023, 37(12): 21110046-11.
[9] 高然, 吴庆港, 雷乐乐, 钟定文, 海杰峰, 陆振欢. n型有机热电材料掺杂改性的研究进展[J]. 材料导报, 2022, 36(10): 21040015-11.
[10] 杨绍斌, 刘雪丽,张旭, 唐树伟. 羟基化平板孔中水合钠离子去溶剂化的第一性原理计算[J]. 材料导报, 2022, 36(1): 20110132-7.
[11] 申兰先, 陈家莉, 李德聪, 刘文婷, 葛文, 邓书康. Yb掺杂Ⅷ型YbxBa8-xGa16Sn30笼合物的制备及热电性能[J]. 材料导报, 2020, 34(8): 8136-8140.
[12] 李鑫, 谢辉, 魏鑫, 张亚龙. Mg2Si1-xSnx合金热电性能的第一性原理计算预测[J]. 材料导报, 2020, 34(18): 18098-18103.
[13] 徐彪, 付上朝, 赵仕俊, 贺新福. 高熵合金辐照性能的计算机模拟进展[J]. 材料导报, 2020, 34(17): 17031-17040.
[14] 龙亮, 刘炳刚, 罗昊, 鲜亚疆. 碳化硼的研究进展[J]. 材料导报, 2019, 33(z1): 184-190.
[15] 王怡心, 马勤, 贾建刚, 高昌琦, 张瑄瑄. Half-Heusler热电材料性能优化策略及研究进展[J]. 材料导报, 2019, 33(z1): 403-407.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed