Please wait a minute...
材料导报  2024, Vol. 38 Issue (21): 23080104-10    https://doi.org/10.11896/cldb.23080104
  金属与金属基复合材料 |
非连续增强钛基复合材料的研究现状及应用进展
潘宇1, 况帆1, 路新1,2,*
1 北京科技大学工程技术研究院,北京100083
2 北京材料基因工程高精尖创新中心,北京 100083
Development and Application of Discontinuously Reinforced Titanium Matrix Composites
PAN Yu1, KUANG Fan1, LU Xin1,2,*
1 Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China
2 Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing 100083, China
下载:  全 文 ( PDF ) ( 9443KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 非连续增强钛基复合材料(DRTMCs)较钛合金基体具有更高的强度、硬度,优异的耐磨和耐热性能,满足高新技术领域对高性能结构材料的苛刻使用要求,在航空航天、国防军工、汽车制造等领域应用前景广阔。本文针对非连续增强钛基复合材料中基体与增强相的设计及增强相制备技术进行综述,尤其是新兴的碳纳米材料增强相以及激光增材制造技术对DRTMCs组织、性能的影响,重点总结了DRTMCs的后续热变形、热处理及多元多尺度和仿生结构复合材料设计的研究进展,介绍其工程应用的发展现状,提出了研究中的现存问题及具有潜力的发展方向,对进一步提高钛基复合材料综合性能、加快其产业化应用进程具有重要意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
潘宇
况帆
路新
关键词:  钛基复合材料  制备方法  增强相  热加工  强韧化机理    
Abstract: Discontinuously reinforced titanium matrix composites (DRTMCs) exhibit promising applications in aerospace, military, automotive manufacturing and other fields due to their high strength, high stiffness, excellent wear and heat resistance compared to traditional titanium alloys, meeting the demanding requirements of high-performance materials in high-tech fields. Herein, this paper reviews the design and preparation of matrix and reinforcements in DRTMCs, with a particular focus on the emerging carbon nanomaterial reinforcements and the impact of laser additive manufacturing techniques on the structure and properties of DRTMCs. The recent development in subsequent hot deformation and heat treatment of DRTMCs as well as in the mechanism of multi-phase and multi-scale reinforcement are discussed emphatically. Moreover, the engineering application developments of DRTMCs are also presented. In addition, the existing problems in the research as well as the potential research directions are pointed out. It will provide useful information to further improve the comprehensive performance of DRTMCs and accelerate their industrial applications.
Key words:  titanium matrix composites    fabrication method    reinforcements    hot working    strengthening and toughening mechanism
出版日期:  2024-11-10      发布日期:  2024-11-11
ZTFLH:  TG146.23  
基金资助: 国家自然科学基金(52274359;52304379);北京市自然科学基金(2212035);中国博士后创新人才支持计划(BX20220034);中国博士后科学基金面上项目(2022M720403)
通讯作者:  *路新,北京科技大学工程技术研究院研究员,博士研究生导师,国家重大人才工程入选者,获全国五一巾帼标兵、国家优秀青年基金、中国冶金青年科技奖、杰出工程师青年奖、全国有色金属优秀青年科技奖等称号。2008年北京科技大学材料科学与工程专业博士毕业。目前主要从事粉末冶金钛应用基础研究。主持国家自然科学基金、中国航空基金、中国航发产学研基金、北京市自然科学基金等项目60余项;发表SCI论文100余篇,包括Advanced Materials、Bioactive Materials、Corrosion Science等;授权国家发明专利50余项;以第一完成人获行业省部级科技成果奖5项。luxin@ustb.edu.cn   
作者简介:  潘宇,北京科技大学工程技术研究院副研究员,硕士研究生导师,入选国家博新计划、北京市科协青年托举人才、北京市优秀博士学位论文。2022年北京科技大学材料科学与工程专业博士毕业。主要从事粉末冶金钛近终形制造技术研究。主持国家自然科学基金、北京市自然科学基金、中国博士后创新人才支持计划项目、中国博士后科学基金面上项目等10余项;以第一/通信作者于Acta Materialia、Corrosion Science、Journal of Materials Science and Technology等权威期刊发表SCI论文40余篇;申获国家发明专利40余项;出版专著2部,编制标准1项;获教育部技术发明二等奖、中国发明协会“发明创新”一等奖、北京科技大学“校长奖章”等荣誉称号。
引用本文:    
潘宇, 况帆, 路新. 非连续增强钛基复合材料的研究现状及应用进展[J]. 材料导报, 2024, 38(21): 23080104-10.
PAN Yu, KUANG Fan, LU Xin. Development and Application of Discontinuously Reinforced Titanium Matrix Composites. Materials Reports, 2024, 38(21): 23080104-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23080104  或          http://www.mater-rep.com/CN/Y2024/V38/I21/23080104
1 Liu G, Leng K, He X, et al. Progress in Natural Science: Materials International, 2022, 32(4), 424.
2 Zhang M Y, Yun X B, Fu H W, et al. Materials Reports, 2024, 38(7), 22080020(in Chinese).
张明玉, 运新兵, 伏洪旺. 材料导报, 2024, 38(7), 22080020.
3 Li L, Li M. Progress in Natural Science: Materials International, 2022, 32(4), 490.
4 Zhang D L. Progress in Material Science, 2022, 123, 100853.
5 Francis H S F. Titanium powder metallurgy, Elsevier, Netherlands, 2015, pp. 12.
6 Hayat M D, Singh H, He Z, et al. Composites Part A: Applied Science and Manufacturing, 2019, 121, 418.
7 Huang L J, An Q, Geng L, et al. Advanced Materials, 2021, 33(6), 2000688.
8 Jiao Y, Huang L J, Geng L. Journal of Alloys and Compounds, 2018, 767, 1196.
9 Zhao X. Preparation and properties of in-situ TiC reinforce titanium matrix composites. Master's Thesis, Beijing Jiaotong University, China,2019 (in Chinese).
赵勋. 原位自生TiC增强钛基复合材料的制备与性能研究.硕士学位论文,北京交通大学, 2019.
10 Yang J H, Wei S, Ji W, et al. Materials Characterization, 2022, 184, 111616.
11 Cai C, Qiu J C D, Shian T W, et al. Additive Manufacturing, 2021, 46, 102134.
12 Liu Y B, Liu Y, Zhao Z W, et al. Journal of Alloys and Compounds, 2014, 599, 188.
13 Zhang C, Guo Z M, Yang F, et al. Journal of Alloys and Compounds, 2018, 769, 37.
14 Bai M W, Namus R D, Xu Y D, et al. Wear, 2019, 432-433, 202944.
15 Kang Z S, Ni Y, Zuo X L, et al. Special Casting & Nonferrous Alloys, 2020, 40(11), 1204(in Chinese).
康壮苏, 倪雅, 左新龙, 等. 特种铸造及有色合金, 2020, 40(11), 1204.
16 Pan D, Zhang X, Hou X D, et al. Materials Science and Engineering: A, 2021, 799, 140137.
17 Li S F, Cui J Y, Yang L F, et al. Metallurgical and Materials Transactions A, 2020, 51(11), 5932.
18 Liu J Q. Preparation and mechanical properties of nano carbon materials reinforced titanium matrix composites. Master's Thesis, Chongqing University,China,2019 (in Chinese).
刘经奇.纳米碳增强钛基复合材料的制备与性能研究. 硕士学位论文,重庆大学, 2019.
19 Yu J S, Zhao Q Y, Huang S X, et al. Journal of Alloys and Compounds, 2021, 879, 160346.
20 Wang J, Zhang F M, Shang C Y, et al. Acta Materiae Compositae Sinica, 2020, 37(12), 3137(in Chinese).
王娟, 张法明, 商彩云, 等. 复合材料学报, 2020, 37(12), 3137.
21 Liu J Q, Hu N, Liu X Y, et al. Nanoscale Research Letters, 2019, 14(1), 114.
22 Pan Y, Li W B, Lu X, et al. Materials Characterization, 2020, 170, 110633.
23 Lu X, Pan Y, Li W B, et al. Materials Science and Engineering: A, 2020, 795, 139924.
24 Wei Z J, Cao L, Wang H W, et al. Materials Science and Technology, 2011, 27(8), 1321.
25 Feng H, Sun Y G, Lian Y Z, et al. Materials, 2020, 13(24), 5751.
26 Pan Y. Oxygen controlling, ceramic phase evolution and strengthening mechanism of high-performance titanium matrix composites. Ph. D. Thesis, University of Science and Technology Beijing, China, 2021 (in Chinese).
潘宇.高性能钛基复合材料的烧结控氧及衍生陶瓷相演变强化机制.博士学位论文 北京科技大学, 2021.
27 Silva A N, Silva G, Ramos A S, et al. Intermetallics, 2006, 14(6), 585.
28 Singh N, Ummethala R, Karamched P S, et al. Journal of Alloys and Compounds, 2021, 865, 158875
29 Liu C, Huang L J, Geng L, et al. Advanced Engineering Materals, 2015, 17(7), 933.
30 Huang L J, Sun F B, An Q, et al. Science China Technologyical Sciences, 2020, 50(7), 935(in Chinese).
黄陆军, 孙枫泊, 安琦, 等. 中国科学:技术科学, 2020, 50(7), 935.
31 Zhang W C, Wang M M, Chen W Z, et al. Materials and Design, 2015, 88, 471.
32 Wang W M, Fu Z Y, Wang H, et al. Journal of European Ceramic Society, 2002, 22(7), 1045.
33 Ma Z Z, Tjong S S, Meng X X. Journal of Materials Research, 2002, 17(9), 2307.
34 Kumari S, Prasad N E, Chandran K S R, et al. JOM, 2004, 56, 51.
35 Kim Y J, Chung H, Kang S J L. Materials Science and Engineering: A, 2002, 333(1-2), 343.
36 Wang L Q, Ling Z H, Zhao Z Y, et al. Materials Reports, 2023, 37(22),22030266(in Chinese).
王利卿, 凌子涵, 赵占勇, 等. 材料导报, 2023, 37(22),22030266.
37 Morsi K. Journal of Materials Science, 2019, 54(9), 6753.
38 Attar H, Bo¨Nisch M, Calin M, et al. Acta Materialia, 2014, 76, 13.
39 Wang J D, Li L Q, Tan C W, et al. Journal of Materials Processing Technology, 2018, 252, 524.
40 Zhu X, Fan Q, Wang D, et al. Progress in Natural Science: Materials International, 2021, 31(5), 742.
41 Gaisin R A, Imayev V M, Imayev R M. Journal of Alloys and Compounds, 2017, 737, 385.
42 Qiu P K, Han Y F, Huang G F, et al. Metallurgical and Materials Tran-sactions A, 2020, 51(5), 2276.
43 Kuang F, Pan Y, Zhang J, et al. Journal of Alloys and Compounds, 2023, 951, 169990.
44 Ma Y, Du Z X, Cui X M, et al. Progress in Natural Science: Materials International, 2018, 28(6), 711.
45 Wang W, Wang M, Cai J, et al. Materials Reports, 2021, 35(8), 08140(in Chinese).
王伟, 王萌, 蔡军,等. 材料导报, 2021, 35(8), 08140.
46 Zhu X, Fan Q, Zhou G, et al. Progress in Natural Science: Materials International, 2022,32(4), 504.
47 Guo R Q, Wang X Q, Liu G H, et al. Materials Reports, 2022, 36(Z1), 22010111(in Chinese).
郭瑞琪, 王秀琦, 刘国怀,等. 材料导报, 2022, 36(Z1), 22010111.
48 Chen R, An Q, Zhang R, et al. Journal of Netshape Forming Enginee-ring, 2021, 13(3), 1(in Chinese).
陈润, 安琦, 张芮, 等. 精密成形工程, 2021, 13(3), 1.
49 Srinivasan R, Miracle D, Tamirisakandala S. Materials Science and Engineering: A, 2008, 487(1-2), 541.
50 Yang J H, Chen Y Y, Xiao S L, et al. Materials Science and Enginee-ring: A, 2020, 788, 139516.
51 Lv S, Li J S, Li S F, et al. Journal of Alloys and Compdounds, 2021, 877, 160313.
52 Ni D R, Geng L, Zhang J, et al. Materials Letters, 2008, 62(4-5), 686.
53 Lai X J, Li S P, Han Y F, et al. Titanium Industry Progress, 2020, 37(3), 40(in Chinese).
来晓君, 李劭鹏, 韩远飞, 等. 钛工业进展, 2020, 37(3), 40.
54 Pan Y, Zhang J S, Sun J Z, et al. Journal of Materials Science and Technology, 2023, 137, 132.
55 Jiao Y, Huang L J, Wei S L, et al. Journal of Materials Science and Technology, 2019, 35(8), 1532.
56 Huo W T, Lei C X, Du Y, et al. Composites Part B: Engineering, 2022, 240, 109991.
57 Duan H Q, Han Y F, Lv W J, et al. Materials and Design, 2016, 99, 219.
58 Han Y F, Duan H Q, Lv W J, et al. Progress in Natural Science: Mate-rials International, 2015, 25(5), 453.
59 Liu L, Li Y K, Zhang H M, et al. Composites Part B: Engineering, 2021, 216, 108851.
60 Mu X N, Cai H N, Zhang H M, et al. Materials and Design, 2018, 140, 431.
61 Gu D D, Chen H Y, Dai D H, et al. iScience, 2020, 23(9), 101498.
62 Han C J, Babicheva R, Chua J D Q, et al. Additive Manufacturing, 2020, 36, 101466.
63 Pan D, Li S F, Gao L N, et al. Advanced Engineering Materials, 2021, 23(9), 2100344.
64 Lagos M A, Agote I, Atxaga G, et al. Materials Science and Engineering: A, 2016, 655, 44.
65 Yang Z W, Fu L Q, Wang S L, et al. Additive Manufacturing, 2021, 39, 101883.
66 Lin K J, Fang Y M, Gu D D, et al. Advanced Powder Technology, 2021, 32(5), 1426.
67 Feng Y J, Li B, Cui G R, et al. Materials, 2017, 10(11), 1227.
68 Cao Z, Wang X D, Li J L, et al. Journal of Alloys and Compounds, 2017, 696, 498.
69 Lv Z D, Zhang C J, Feng H, et al. Materials Science and Engineering: A, 2019, 761, 138064.
70 Abkowitz S, Abkowitz S M, Fisher H, et al. JOM, 2004, 56(5), 37.
71 Huang L J, Geng L, Peng H X. Materials China, 2019, 38(3), 214(in Chinese).
黄陆军, 耿林, 彭华新. 中国材料进展, 2019, 38(3), 214.
[1] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[2] 佘欢, 时磊, 董安平. 钛基石墨烯复合材料的分散性、界面结构及力学性能[J]. 材料导报, 2024, 38(5): 23030202-8.
[3] 李再久, 夏臣平, 刘明诏, 金青林. 骨组织工程镁基支架的制备研究进展[J]. 材料导报, 2024, 38(4): 22050324-11.
[4] 孙文明, 李韶林, 宋克兴, 王强松, 丁宗业, 朱莹莹. 铸态Cu-1.16Ni-0.36Cr合金热变形行为及热加工图[J]. 材料导报, 2024, 38(2): 22040205-8.
[5] 孙国栋, 康凯, 解静, 贾研, 郑斌, 吕龙飞, 田清来, 唐宇星. Ti3SiC2陶瓷材料制备方法研究进展[J]. 材料导报, 2024, 38(18): 23020262-11.
[6] 莫琛, 向阳, 陈坤, 张稳, 彭志航, 文瑾, 曹建辉. Al2O3f/Al2O3陶瓷基复合材料研究进展[J]. 材料导报, 2024, 38(18): 23030126-9.
[7] 高瑞泽, 王亚强, 张金钰, 杨红艳, 刘刚, 孙军. 梯度结构金属材料的制备方法和力学性能研究进展[J]. 材料导报, 2024, 38(15): 23040269-12.
[8] 穆锐, 刘元雪, 欧忠文, 胡志德, 姚未来, 成鑫磊, 雷屹欣, 杨秀明. 气凝胶复合材料的制备及保温隔热应用进展[J]. 材料导报, 2024, 38(14): 22110298-14.
[9] 王兰喜, 何延春, 王虎, 吴春华, 李林. 石墨烯导热纸研究进展[J]. 材料导报, 2023, 37(3): 20110183-9.
[10] 乔瑞林, 龙伟民, 钟素娟, 廖志谦, 樊喜刚, 魏永强. 原位反应在钎焊中的应用[J]. 材料导报, 2023, 37(23): 22060183-8.
[11] 房洪杰, 刘慧, 孙杰, 张倩, 余琨. 5xxx系铝合金研究现状及发展趋势[J]. 材料导报, 2023, 37(21): 22010082-10.
[12] 王杰, 黄海亮, 周亚洲, 张华, 阮晶晶, 周鑫, 张尚洲, 江亮. 镍基粉末高温合金中γ′相溶解行为与动力学研究进展[J]. 材料导报, 2023, 37(21): 23020100-9.
[13] 张星星, 高相东, 董余兵, 段灯, 李效民. SiO2气凝胶@聚合物复合材料的制备方法及性能研究进展[J]. 材料导报, 2023, 37(21): 22040191-11.
[14] 汤迁, 郭鹏程, 罗红, 马洪浩, 张立强, 李落星. 车身用22MnB5超高强热成形钢的热变形行为及热加工图[J]. 材料导报, 2023, 37(18): 22030170-7.
[15] 朱万利, 包建勋, 张舸, 崔聪聪. 金刚石/碳化硅复合材料的研究进展[J]. 材料导报, 2023, 37(10): 22100263-8.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed