Please wait a minute...
材料导报  2023, Vol. 37 Issue (21): 23020100-9    https://doi.org/10.11896/cldb.23020100
  金属与金属基复合材料 |
镍基粉末高温合金中γ′相溶解行为与动力学研究进展
王杰, 黄海亮*, 周亚洲, 张华, 阮晶晶, 周鑫, 张尚洲, 江亮
烟台大学精准材料高等研究院,山东 烟台 264010
Research Progress in Dissolution Behavior and Kinetics of γ′ Precipitate in Nickel-based Powder Metallurgy Superalloys
WANG Jie, HUANG Hailiang*, ZHOU Yazhou, ZHANG Hua, RUAN Jingjing, ZHOU Xin, ZHANG Shangzhou, JIANG Liang
Institute for Advanced Studies in Precision Materials, Yantai University, Yantai 264010, Shandong, China
下载:  全 文 ( PDF ) ( 20195KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了满足航空发动机高性能、高热效率的要求,镍基粉末高温合金的合金化程度越来越高,导致合金变形抗力大,热塑性差,热加工窗口窄,从而制约了合金的制备与应用。合金中高体积分数的γ′相在热加工过程中起到组织调控的作用,热加工过程中γ′相的演变影响着合金的热变形行为和热加工性能。了解热加工过程中γ′相的演变规律对调控合金组织和优化热加工工艺具有重要意义。本文以镍基粉末高温合金热加工过程中γ′相的溶解为讨论对象,综述了近年来γ′相的溶解行为及其影响因素、预测模型相关研究工作。目前高体积分数多颗粒体系析出相的溶解机理还不清楚,γ′相溶解过程中是否存在分裂和团聚等行为及其影响机理、热变形过程中位错与γ′相之间的相互作用机理、γ′相溶解动力学等有待进一步研究。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王杰
黄海亮
周亚洲
张华
阮晶晶
周鑫
张尚洲
江亮
关键词:  镍基粉末高温合金  热加工  γ′相  溶解    
Abstract: In order to meet the requirements of high performance and high thermal efficiency of aeroengine, the gradual increase of alloying elements in nickel-based powder metallurgy (PM) superalloys leads to high deformation resistance, poor thermoplasticity and narrow hot working window of the PM superalloys, which restricts the preparation and application of the alloy. The γ′ precipitate with high volume fraction in PM superalloys plays a role in microstructure control during hot working. The evolution of γ′ precipitates affects the hot deformation behavior and hot workability of the PM superalloys. Understanding the evolution law of γ′ precipitates is of great significance to control the microstructural evolution and optimize the hot working process of superalloys. In this paper, the dissolution of γ′ precipitates in the hot working process of nickel-based PM superalloys is discussed. The research works on the dissolution behaviors of γ′ precipitates, influence factors and prediction models are reviewed. At pre-sent, the dissolution mechanism of precipitates in high volume fraction multi-particle system is not clear, whether there is splitting and agglomeration behavior in the dissolution process of γ′ precipitate and its influence mechanism, the interaction mechanism between dislocation and γ′ precipitate in the thermal deformation process and the dissolution kinetics of γ′ precipitate need to be further studied.
Key words:  nickel-based powder metallurgy superalloy    hot working    γ′ precipitate    dissolution
出版日期:  2023-11-10      发布日期:  2023-11-10
ZTFLH:  TG156.1  
基金资助: 国家重点研发计划(2021YFB3700401);国家自然科学基金(52201049);山东省高等学校青创引育计划创新团队资助项目(2021)
通讯作者:  *黄海亮,烟台大学精准材料高等研究院讲师、硕士研究生导师。2011年辽宁科技大学材料科学与工程专业本科毕业,2014年辽宁科技大学材料科学与工程专业硕士毕业,2020年北京科技大学材料科学与工程专业博士毕业。目前主要从事高温合金组织、性能调控等方面的研究工作。发表论文20余篇,包括Journal of Alloys and Compounds、Intermetallics、Metallurgical and Materials Transactions A等。huanghailiang894@163.com   
作者简介:  王杰,2021年7月毕业于太原科技大学,获得工学学士学位。现为烟台大学精准材料研究院的硕士研究生,在黄海亮老师的指导下进行研究。目前主要研究领域为高温合金的组织调控。
引用本文:    
王杰, 黄海亮, 周亚洲, 张华, 阮晶晶, 周鑫, 张尚洲, 江亮. 镍基粉末高温合金中γ′相溶解行为与动力学研究进展[J]. 材料导报, 2023, 37(21): 23020100-9.
WANG Jie, HUANG Hailiang, ZHOU Yazhou, ZHANG Hua, RUAN Jingjing, ZHOU Xin, ZHANG Shangzhou, JIANG Liang. Research Progress in Dissolution Behavior and Kinetics of γ′ Precipitate in Nickel-based Powder Metallurgy Superalloys. Materials Reports, 2023, 37(21): 23020100-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23020100  或          http://www.mater-rep.com/CN/Y2023/V37/I21/23020100
1 Osada T, Gu Y F, Nagashima N, et al. Acta Materialia, 2013, 61(5), 1820.
2 Reed R C. The superalloys:fundamentals and applications, Cambridge University Press, UK, 2006, pp. 1.
3 Zhang M, Liu G Q, Hu B F. Acta Metallurgica Sinica, 2017, 53(11), 1469 (in Chinese).
张明, 刘国权, 胡本芙. 金属学报, 2017, 53(11), 1469.
4 Zhang Y W, Liu J T. Materials Advances in China, 2013, 32(1), 1 (in Chinese).
张义文, 刘建涛. 中国材料进展, 2013, 32(1), 1.
5 Zhang Y W, Shangguan Y H. Powder Metallurgy Industry, 2004, 14(6), 30 (in Chinese).
张义文, 上官永恒. 粉末冶金工业, 2004, 14(6), 30.
6 Semiatin S, Levkulich N, Saurber A, et al. Metallurgical and Materials Transactions A, 2017, 48(11), 5567.
7 Perez M, Dumont C, Nodin O, et al. Materials Characterization, 2018, 146, 169.
8 Hou Q, Tao Y, Jia J. Journal of Materials Engineering, 2019, 47(3), 94 (in Chinese).
侯琼, 陶宇, 贾建. 材料工程, 2019, 47(3), 94.
9 Li X, Zhang M C, Li W, et al. Journal of University of Science and Technology Beijing, 2014, 36(7), 910 (in Chinese).
李昕, 张麦仓, 李伟, 等. 北京科技大学学报, 2014, 36(7), 910.
10 Bi Z N, Lv X D, Zhang J. In:MATEC Web of Conferences. EDP Sciences, France, 2014, pp. 07002.
11 Zhang B J, Zhang W Y, Liu J T, et al. In:The 14th International Symposium on Superalloys. Pennsylvania, USA, 2020, pp. 509.
12 Wu Y T, Li C, Xia X C, et al. Journal of Materials Science & Technology, 2021, 67, 95.
13 Qu J L, Yi C S, Chen J W, et al. Journal of Materials Engineering, 2020, 48(8), 73 (in Chinese).
曲敬龙, 易出山, 陈竞炜, 等. 材料工程, 2020, 48(8), 73.
14 Wang G, Xu D S, Ma N, et al. Acta Materialia, 2009, 57(2), 316.
15 Huang H L. Study on preparation and characterization of advanced PM superalloy FGH98. Ph. D. Thesis, University of Science and Technology Beijing, China, 2020 (in Chinese).
黄海亮. 先进PM高温合金FGH98制备和性能表征相关基础问题的研究. 博士学位论文, 北京科技大学, 2020.
16 Masoumi F, Jahazi M, Shahriari D, et al. Journal of Alloys and Compounds, 2016, 658, 981.
17 Dwarapureddy A K, Balikci E, Ibekwe S, et al. Journal of Materials Science, 2008, 43, 1802.
18 Lai K W, Shi S J, Yan Z W, et al. Rare Metals, 2021, 40(5), 1155.
19 Lee H T, Lee S W. Journal of Materials Science Letters, 1990, 9(5), 516.
20 Wang T Y, Wang X M, Zhao Z H, et al. Materials at High Temperatures, 2016, 33(1), 51.
21 Yang H Y, Wen H N, Jin J S, et al. Chinese Journal of Nonferrous Metals, DOI:10. 11817/j. ysxb. 1004. 0609. 2022-43670(in Chinese).
杨贺阳, 温红宁, 金俊松, 等. 中国有色金属学报, DOI:10. 11817/j. ysxb. 1004. 0609. 2022-43670.
22 Hu B F, Liu G Q, Wu K, et al. Acta Metallurgica Sinica, 2012, 48(3), 257 (in Chinese).
胡本芙, 刘国权, 吴凯, 等. 金属学报, 2012, 48(3), 257.
23 Grosdidier T, Hazotte A, Simon A. Scripta Metallurgica et Materialia, 1994, 30(10), 1257.
24 Masoumi F, Jahazi M, Cormier J, et al. In:MATEC Web of Conferences. EDP Sciences, France, 2014, pp. 13005.
25 Umantsev A, Olson G B. Scripta Metallurgica et Materialia, 1993, 29(8), 1135.
26 Philippe T, Voorhees P W. Acta Materialia, 2013, 61(11), 4237.
27 Kim K, Voorhees P W. Acta Materialia, 2018, 152, 327.
28 Huang H L, Liu G Q, Wang H, et al. Metallurgical and Materials Transactions A, 2020, 51(3), 1075.
29 Whelan M J. Metal Science Journal, 1969, 3(1), 95.
30 Miyazaki T, Imamura H, Mori H, et al. Journal of Materials Science, 1981, 16(5), 1197.
31 Legros M, Dehm G, Arzt E, et al. Science, 2008, 319(5870), 1646.
32 Wan Z P, Shen J Y, Wang T, et al. Journal of Materials Engineering and Performance, 2022, 31(2), 1594.
33 Payton E J, Wynn T A, Mills M J. Journal of Materials Science, 2012, 47(20), 7305.
34 Sun B, Zhang T, Song L, et al. Journal of Materials Research and Technology, 2022, 18, 1436.
35 Zhou X, Ma T, Li Y, et al. Materials Science and Engineering:A, 2019, 761, 138046.
36 Huang Z Q, Wang Y, Liu M X, et al. Chinese Journal of Nonferrous Metals, 2021, 31(7), 1842 (in Chinese).
黄钲钦, 王岩, 刘敏学, 等. 中国有色金属学报, 2021, 31(7), 1842.
37 Ren S, Zhang H, Yu Z C, et al. Chinese Journal of Nonferrous Metals, 2022, 32(9), 2647 (in Chinese).
任帅, 张华, 于子超, 等. 中国有色金属学报, 2022, 32(9), 2647.
38 Souza N, Li W, Argyrakis C, et al. Metallurgical and Materials Transactions A, 2019, 50(9), 4205.
39 Perez M, Dumont C, Nouveau S. Superalloys 2020, Springer, Germany, 2020, pp. 441.
40 Yang Q M, Lin Y C, Guo J Z, et al. Journal of Alloys and Compounds, 2022, 910, 164909.
41 Avrami M. The Journal of Chemical Physics, 1941, 9(2), 177.
42 Cormier J, Milhet X, Mendez J. Journal of Materials Science, 2007, 42(18), 7780.
43 Yang Q M, Lin Y C, Liu G, et al. Journal of Alloys and Compounds, 2023, 947, 169653.
44 Jaeger J C, Carslaw H S. Conduction of heat in solids, Oxford University Press, UK, 1959.
45 Thomas G, Whelan M J. Philosophical Magazine, 1961, 6(69), 1103.
46 Aaron H B, Kotler G R. Metallurgical Transactions, 1971, 2(2), 393.
47 Aaron H B, Kotler G R. Metal Science Journal, 1970, 4(1), 222.
48 Li Y S, Zhao W J, Chen X, et al. Journal of Materials Research and Technology, 2022, 17, 1450.
49 Zhou T, Song Z, Sundmacher K. Engineering, 2019, 5(6), 1017.
50 Xie J X, Su Y J, Xue D Z, et al. Acta Metallurgica Sinica, 2021, 57(11), 1343 (in Chinese).
谢建新, 宿彦京, 薛德祯, 等. 金属学报, 2021, 57(11), 1343.
51 Karniadakis G E, Kevrekidis I G, Lu L, et al. Nature Reviews Physics, 2021, 3(6), 422.
52 Quan G Z, Zhang P, Ma Y Y, et al. Transactions of Nonferrous Metals Society of China, 2020, 30(9), 2435.
53 Li Y P, Liu Y Y, Luo S H, et al. Journal of Materials Research and Technology, 2020, 9(6), 14467.
[1] 房洪杰, 刘慧, 孙杰, 张倩, 余琨. 5xxx系铝合金研究现状及发展趋势[J]. 材料导报, 2023, 37(21): 22010082-10.
[2] 汤迁, 郭鹏程, 罗红, 马洪浩, 张立强, 李落星. 车身用22MnB5超高强热成形钢的热变形行为及热加工图[J]. 材料导报, 2023, 37(18): 22030170-7.
[3] 张鹏翼, 封孝信, 刘刚, 安宇坤. 铁尾矿在碱性环境下的溶解特性[J]. 材料导报, 2023, 37(17): 22010206-7.
[4] 李燕, 张俊杰, 郭俊明. Ni-La双掺LiMn2O4截角八面体正极材料的制备及电化学性能[J]. 材料导报, 2023, 37(14): 21120089-8.
[5] 陈天天, 施晨琦, 宁哲达, 闻明, 管伟明, 郭俊梅, 王传军. 金属及合金材料热变形中的本构模型与热加工图研究进展[J]. 材料导报, 2022, 36(Z1): 21120011-9.
[6] 曹召勋, 王军, 刘辰, 韩俊刚, 王荫洋, 钟亮, 王荣, 徐永东, 朱秀荣. 铸态Mg-2Y-0.8Mn-0.6Ca-0.5Zn镁合金热变形行为研究[J]. 材料导报, 2022, 36(Z1): 21120147-5.
[7] 陈营, 魏燕红, 陈德平, 周红梅. 支化度对TAP-BFDA聚酰亚胺的性能影响研究[J]. 材料导报, 2022, 36(23): 21030027-5.
[8] 刘鑫, 田轶轩, 黄金凤, 万城铭, 杨宏宇, 万朝均. 用于地聚合物的粉煤灰活性评价研究[J]. 材料导报, 2022, 36(2): 21010007-7.
[9] 屈鑫, 丁鹤洋, 王超, 刘玉, 汪海年. 基于分子动力学模拟技术的生物质油改性沥青微观性能研究[J]. 材料导报, 2022, 36(19): 21050106-6.
[10] 盛奥, 姜昊基, 赵亚欣, 魏忠, 李昊, 贾昊, 王贺云. F-ZIF-90/PDMS混合基质膜的制备及强化乙醇传递过程的研究[J]. 材料导报, 2022, 36(17): 21030316-6.
[11] 王心桥, 张健, 苏彤, 赵兴, 郭永权. 先进液态金属电池熔盐电解质的设计[J]. 材料导报, 2022, 36(1): 20090223-7.
[12] 王颂博, 李全安, 陈晓亚, 朱利敏, 张帅, 关海昆. Zn对Mg-11Gd-3Y-0.5Zr合金热压缩行为的影响[J]. 材料导报, 2021, 35(4): 4124-4128.
[13] 张军, 王薇, 储刚, 周丹丹, 赵婧, 王琳, 李芳芳. 生物炭中溶解性有机质与Cu(Ⅱ)的络合机制研究[J]. 材料导报, 2021, 35(22): 22160-22165.
[14] 苏粤兰, 罗兵辉, 柏振海, 莫文锋, 何川. Al-Mg-Si-In合金的热变形行为和热轧工艺[J]. 材料导报, 2021, 35(20): 20137-20142.
[15] 武文浩, 郭莉, 张志, 宋江锋, 陈长安, 王广西. 液态锂铅合金中氢同位素测量研究进展[J]. 材料导报, 2021, 35(19): 19125-19133.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed