ZHU Wanli1,2, BAO Jianxun1,2,*, ZHANG Ge1,2, CUI Congcong1,2
1 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China 2 Key Laboratory of Optical System Advanced Manufacturing Technology, Chinese Academy of Sciences, Changchun 130033, China
Abstract: Diamond/SiC composites combine the advantages of SiC and diamond, and have excellent properties such as high thermal conductivity, low thermal expansion coefficient, high specific stiffness, high hardness and wear resistance, which have broad application prospects, and are one of the key research focuses in the field of ceramic matrix composites. Diamond/SiC composites are first prepared by high temperature and high pressure method, which can effectively avoid the harmful effects of graphitization of diamond particles. With the continuous development of technology, a variety of preparation methods have emerged. The properties of diamond/SiC composites are determined by the major phase content, interfacial phase structure and microstructure under different preparation methods. This paper reviews the research and development status of diamond/SiC composites at home and abroad, describes the preparation method, performance characteristics, microstructure and interfacial reaction mechanism, analyzes the current problems of diamond/SiC composites, and gives an outlook on the future development of this composites.
1 Sumiya H, Toda N, Satoh S. Diamond and Related Materials, 1997, 6(12), 1841. 2 Blank V, Popov M, Pivovarov G, et al. Diamond and Related Materials, 1999, 8(8-9), 1531. 3 Slack G A. Journal of Physics and Chemistry of Solids, 1973, 34(2), 321. 4 Moelle C, Klose S, Szücs F, et al. Diamond and Related Materials, 1997, 6(5-7), 839. 5 Brazhkin V V, Lyapin A G, Popova S V, et al. Physical Review B, 1997, 56(18), 11465. 6 Richard B K, John J G, Sarah H T. Science, 2005, 308(5726), 1268. 7 Li Q, Zhan G D, Li D, et al. Scientific Reports, 2020, 10(1), 1. 8 Field J E. Reports on Progress in Physics, 2012, 75(12), 1. 9 Zhang W X, Mu Y C, Liang B Y, et al. Superhard Material Enginee-ring, 2014, 26(3), 10 (in Chinese). 张旺玺, 穆云超, 梁宝岩, 等. 超硬材料工程, 2014, 26(3), 10. 10 Zhang C, Wang R C, Cai Z Y, et al. Surface and Coatings Technology, 2015, 277, 299. 11 Muhammad Z, Kabeer R, Fazal A K, et al. Materials & Design, 2015, 86, 248. 12 Yue X B, Wu R J, Zhang G D. Materials Reports, 1994, 8(3), 64 (in Chinese). 喻学斌, 吴人洁, 张国定. 材料导报, 1994, 8(3), 64. 13 Fahrenholtz W G, Hilmas G E. Scripta Materialia, 2017, 129, 94. 14 Talwar D N, Sherbondy J C. Applied Physics Letters, 1995, 67(22), 3301. 15 Slack G A. Journal of Applied Physics, 1964, 35(12), 3460. 16 Mitchell J S, Zorman C A, Kicher T, et al. Journal of Aerospace Engineering, 2003, 16(2), 46. 17 Chai W, Deng Q F, Wang Y Y, et al. Light Industry Machinery, 2012, 30(4), 117 (in Chinese). 柴威, 邓乾发, 王羽寅, 等. 轻工机械, 2012, 30(4), 117. 18 Akbas M A, Mastrobattisto D, Vance B, et al. Ceramic Engineering & Science Proceedings, 2013, 33(2), 135. 19 Svendsen L, Zheng J, Meurling F, et al. U. S. patent application, US20080199388, 2008. 20 He P B. Preparation and characterization of diamond/SiC composites. Master's Thesis, National University of Defense Technology, China, 2008 (in Chinese). 贺鹏博. Diamond/SiC陶瓷基复合材料的制备及性能研究. 硕士学位论文, 国防科学技术大学, 2008. 21 Li Q H, Peng F, Wu Q, et al. Diamond and Abrasives Engineering, 2010, 30(2), 54 (in Chinese). 李庆华, 彭放, 武琪, 等. 金刚石与磨料磨具工程, 2010, 30(2), 54. 22 Zhang Y Y, Wang T S, Hsu C Y, et al. Ceramics International, 2021, 47(12), 17084. 23 Bundy F P. Physica A:Statistical Mechanics and Its Applications, 1989, 156(1), 169. 24 Nauyoks S, Wieligor M, Zerda T W, et al. Composites Part A:Applied Science and Manufacturing, 2009, 40(5), 566. 25 Wu Q, Peng F, Li Q H, et al. Diamond and Abrasives Engineering, 2011, 31(2), 40 (in Chinese). 武琪, 彭放, 李庆华, 等. 金刚石与磨料磨具工程, 2011, 31(2), 40. 26 Chen L, Yang X, Su Z A, et al. Ceramics International, 2018, 44(8), 9601. 27 Yang Z L, He X B, Zhang H M, et al. Rare Metal Materials and Engineering, 2011, 40(S1), 383 (in Chinese). 杨振亮, 何新波, 张昊明, 等. 稀有金属材料与工程, 2011, 40(S1), 383. 28 Cavaliere P. In:Spark Plasma Sintering of Materials, Cavaliere P, ed. , Springer, Switzerland, 2019, pp.3. 29 Zhu C X, Lang J, Ma N G. Ceramics International, 2012, 38(8), 6131. 30 Zhou X L. Fabrication of diamond composites by spark plasma sintering. Master's Thesis, Yanshan University, China, 2013 (in Chinese). 周小琳. 放电等离子体烧结制备金刚石复合材料. 硕士学位论文, 燕山大学, 2013. 31 Ohtaka O, Shimono M, Ohnishi N, et al. Physics of the Earth and Planetary Interiors, 2004, 143-144(1), 587. 32 Ohtaka O, Ohnishi N, Kubo K, et al. High Pressure Research, 2005, 25(1), 11. 33 Ohtaka O, Funakoshi K I, Shimono M. Journal of the Society of Materials Science Japan, 2012, 61(5), 407 34 Hirota K, Aoki M, Kato M, et al. Journal of the Japan Society of Powder and Powder Metallurgy, 2019, 66(1), 37. 35 Liu Y S, Hu C H, Feng W, et al. Journal of the European Ceramic Society, 2014, 34(15), 3489. 36 Nishihora R K, Rachadel P L, Quadri M, et al. Journal of the European Ceramic Society, 2017, 38(4), 988. 37 Chen C, Liu Y S, Wang C H, et al. Advanced Engineering Materials, 2018, 21(5), 1800640. 38 Mlungwane K, Herrmann M, Sigalas I. Journal of the European Ceramic Society, 2008, 28(1), 321. 39 Mathhey B, Kunze S, Hörner M, et al. Journal of Materials Research, 2017, 32(17), 3362. 40 Wang X L. Preparation and properties of diamond/silicon carbide composites by silicon liquid infiltration. Ph. D. Thesis, University of Science and Technology Beijing, China, 2021 (in Chinese). 王旭磊. 液相硅熔渗制备金刚石/碳化硅复合材料及性能研究. 博士学位论文, 北京科技大学, 2021. 41 Yang Z L, He X B, Wu M, et al. Ceramics International, 2013, 39(3), 3399. 42 Zheng W. Preparation and properties of diamond/SiC composites by silicon vapor infiltration. Ph. D. Thesis, University of Science and Techno-logy Beijing, China, 2019 (in Chinese). 郑伟. 气相渗硅制备金刚石/碳化硅复合材料及其性能研究. 博士学位论文, 北京科技大学, 2019. 43 Ambrosi A, Pumera M. Chemical Society Reviews, 2016, 45(10), 2740. 44 Chen R G, Lian Q, Li D C, et al. Ceramics International, 2021, 47(10), 14009. 45 Tang Y H, Zhou J J, Zou Y, et al. Chemistry & Bioengineering, 2021, 38(9), 42 (in Chinese). 唐弋昊, 周佳骏, 邹阳, 等. 化学与生物工程, 2021, 38(9), 42. 46 Tang J, Yang Y, Huang Z R. Materials Reports, 2021, 35(Z1), 172 (in Chinese). 唐杰, 杨勇, 黄政仁. 材料导报, 2021, 35(Z1), 172. 47 Herrmann M, Matthey B, Hörner S, et al. Journal of the European Ceramic Society, 2012, 32(9), 1915. 48 Zheng W, He X B, Wu M, et al. Applied Physics A, 2018, 124(12), 804. 49 Carrete J, Vermeersch B, Katre A, et al. Computer Physics Communications, 2017, 220, 351. 50 Zheng W, He X B, Wu M, et al. Vacuum, 2019, 159, 507. 51 Voronin G A, Zerda T W, Qian J, et al. Diamond and Related Materials, 2003, 12(9), 1477. 52 Ko Y S, Tsurumi T, Fukunaga O, et al. Journal of Materials Science, 2001, 36(2), 469. 53 Li Y Y, Cao X X, Yu Y, et al. Journal of Applied Physics, 2020, 128(24), 245091. 54 He X B, Zhang Z J, Liu P F, et al. Journal of the European Ceramic Society, 2022, 42(7), 3127. 55 Mathhey B, Höhn S, Wolfrum A K, et al. Journal of the European Ceramic Society, 2017, 37(5), 1917. 56 Zhang Y Y, Hsu C Y, Karandikar P, et al. Journal of the European Ceramic Society, 2019, 39(16), 5190. 57 Fitzer E, Fritz W, Gadow R. Chemie Ingenieur Technik, 1985, 57(9), 737. 58 Yang Z L, He X B, Wu M, et al. Journal of the European Ceramic Society, 2013, 33(4), 869. 59 Pampuch R, Walasek E, Bialoskórski J. Ceramics International, 1986, 12(2), 99. 60 Shevchenko V Y, Perevislov S N, Ugolkov V L. Glass Physics and Che-mistry, 2021, 47(3), 197.