Please wait a minute...
材料导报  2024, Vol. 38 Issue (5): 23030202-8    https://doi.org/10.11896/cldb.23030202
  金属与金属基复合材料 |
钛基石墨烯复合材料的分散性、界面结构及力学性能
佘欢1,*, 时磊1, 董安平2,3,*
1 上海应用技术大学机械工程学院,上海 201418
2 上海交通大学材料科学与工程学院,上海 200240
3 上海市先进高温材料及其精密成形重点实验室,上海 200240
Dispersion, Interface Structure and Mechanical Properties of Titanium Based Graphene Composites
SHE Huan1,*, SHI Lei1, DONG Anping2,3,*
1 School of Mechanical Engineering, Shanghai Institute of Technology, Shanghai 201418, China
2 School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
3 Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, Shanghai 200240, China
下载:  全 文 ( PDF ) ( 19588KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石墨烯由于独特的结构和优异的力学、导电、润滑等性能,被认为是理想的金属基复合材料的增强体。将石墨烯作为增强体增强钛基复合材料有着巨大的应用潜力。然而,石墨烯的分散性及其与钛基体的反应是制约获得高性能石墨烯增强钛基复合材料的难点。本文综述了钛基石墨烯复合材料的分散性、界面及力学性能的研究进展。钛基石墨烯复合材料通常采用粉末冶金法制备,石墨烯能较均匀地分散于复合材料组织中,但当石墨烯添加量过多时仍会出现团聚现象。石墨烯与钛基体易发生反应生成TiC,通过固化烧结工艺的改进、基体复合化、石墨烯表面改性以及原位自生等方法可以有效地抑制界面反应并提高界面结合力。随着石墨烯含量的增加,钛基石墨烯复合材料的压缩、拉伸强度与硬度一般呈现先增大后减小的趋势。石墨烯增强钛基复合材料的强化机制通常以载荷传递强化为主,但有些情况下由石墨烯引起的位错强化、细晶强化及奥罗万(Orowan)强化效果也较为显著。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
佘欢
时磊
董安平
关键词:  石墨烯  钛基复合材料  分散性  界面  强度  强化机制    
Abstract: Graphene is considered to be an ideal reinforcement for metal matrix composites due to its unique structure and excellent mechanical, electrical and lubricating properties. However, the dispersion of graphene and its reaction with titanium matrix are the difficulties in obtaining high-performance graphene reinforced titanium matrix composites. This paper reviews the research progress of dispersion, interface and mechanical properties of titanium-based graphene composites. Titanium-based graphene composites are usually prepared by powder metallurgy. Graphene can be uniformly dispersed in the composite structure, but agglomeration still occurs when too much graphene is added. Graphene and titanium matrix are prone to react to form TiC. The interface reaction can be effectively inhibited and the interface bonding force can be improved by improving the curing sintering process, matrix compounding, graphene surface modification and in-situ self-generation. With the increase of graphene content, the compressive, tensile strength and hardness of titanium-based graphene composites generally increase first and then decrease. The strengthening mechanism of graphene reinforced titanium matrix composites is usually dominated by load transfer strengthening, but in some cases, dislocation strengthening, fine grain strengthening and Orowan strengthening caused by graphene are also significant.
Key words:  graphene    titanium matrix composite    dispersion    interface    strength    strengthening mechanism
出版日期:  2024-03-10      发布日期:  2024-03-18
ZTFLH:  TG146.2  
基金资助: 国家自然科学基金青年基金(51901131);上海应用技术大学引进人才科研启动项目(YJ2020-19)
通讯作者:  *佘欢,上海应用技术大学机械工程学院讲师、硕士研究生导师。2017年获上海交通大学工学博士学位,2017—2019年在上海交通大学医学院附属第九人民医院从事博士后研究工作。近年来主要从事新型生物医用钛合金、金属材料3D打印、智能制造等研究。主持国家自然科学基金青年基金项目1项,参加973计划、国家重点项目、国家自然科学基金面上项目等多项,累积发表论文10余篇。 huanshe@sit.edu.cn
董安平,上海交通大学材料科学与工程学院研究员、博士研究生导师,中国材料研究学会青年工作委员会副主任、常务理事,中国金属学会冶金固体废弃物利用分会委员。主要从事生物医用钛合金、高温合金凝固及增材制造理论与应用基础研究。作为项目负责人主持国家重点研发计划课题、国家973项目子课题、国家自然科学基金(4项)等项目。以第一/通信作者在Advanced Functional Materials、Materials Characterization、Materials and Design、MSEA、JAC、MMTA等期刊发表SCI/EI论文60余篇。 apdong@sjtu.edu.cn   
引用本文:    
佘欢, 时磊, 董安平. 钛基石墨烯复合材料的分散性、界面结构及力学性能[J]. 材料导报, 2024, 38(5): 23030202-8.
SHE Huan, SHI Lei, DONG Anping. Dispersion, Interface Structure and Mechanical Properties of Titanium Based Graphene Composites. Materials Reports, 2024, 38(5): 23030202-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23030202  或          http://www.mater-rep.com/CN/Y2024/V38/I5/23030202
1 Hu Y B, Cong W L, Wang X L, et al. Composites Part B:Engineering, 2018, 133, 91.
2 Henriques V A R, Campos P P D, Cairo C A A, et al. Materials Research, 2005, 8(4), 443.
3 Kondoh K, Umeda J, Soba R, et al. Titanium in Medical and Dental Applications, DOI:10.1016/B978-0-12-812456-7.00027-5.
4 Yu Q, Qi L, Tsuru T, et al. Science, 2015, 347(6222), 635.
5 Guo S, Meng Q, Cheng X, et al. Progress in Natural Science: Materials International, 2015, 25(5), 414.
6 Hayat M D, Singh H, He Z, et al. Composites Part A: Applied Science and Manufacturing, 2019, 121, 418.
7 Zhang F M, Wang J, Liu T F, et al. Materials & Design, 2020, 186, 108330.
8 Song Y, Chen Y, Liu W W, et al. Materials & Design, 2016, 109, 256.
9 Suo L, Jiang N, Wang Y, et al. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2019, 107(3), 635.
10 Dong L L, Xiao B, Liu Y, et al. Ceramics International, 2018, 44(15), 17835.
11 Cao Z, Wang X D, Li J L, et al. Journal of Alloys and Compounds, 2017, 696, 498.
12 Cao H C, Liang Y L. Journal of Alloys and Compounds, 2020, 812, 152057.
13 Yan Q, Chen B, Cao L, et al. Journal of Materials Science & Technology, 2022, 96, 85.
14 Geim A K, Novoselov K S. Nature Materials, 2007, 6(3), 183.
15 Balandin A A, Ghosh S, Bao W, et al. Nano Letters, 2008, 8(3), 902.
16 Zhu Y, Murali S, Cai W, et al. Advanced Materials, 2010, 22(35), 3906.
17 Tjong S C. Materials Science and Engineering R: Reports, 2013, 74(10), 281.
18 Farjadian F, Abbaspour S, Sadatlu M A A, et al. Chemistryselect, 2020, 5(33), 10200.
19 Liu P, Yan C X, Ling Z C, et al. Materials Reports, 2016, 30(19), 39(in Chinese).
刘朋, 闫翠霞, 凌自成, 等. 材料导报, 2016, 30(19), 39.
20 Papageorgiou D G, Kinloch I A, Young R J. Progress in Materials Science, 2017, 90, 75.
21 Smith A T, Lachance A M, Zeng S, et al. Nano Materials Science, 2019, 1(1), 31.
22 Hansora D P, Shimpi N G, Mishra S. Jom, 2015, 67(12), 2855.
23 Pei S, Cheng H M. Carbon, 2012, 50(9), 3210.
24 Nieto A, Bisht A, Lahiri D, et al. International Materials Reviews, 2016, 62(5), 241.
25 Sahoo S K, Mallik A. Nano, 2019, 14(3), 1930003.
26 Baig Z, Mamat O, Mustapha M. Critical Reviews in Solid State and Materials Sciences, 2016, 43(1), 1.
27 Zhang Z Y, Liang Y L, Cao H C, et al. Science of Advanced Materials, 2020, 12(2), 296.
28 Shang C Y, Zhang F M, Zhang B, et al. Materials & Design, 2020, 196, 109.
29 Dorri M A, Omrani E, Menezes P L, et al. Composites Part B: Enginee-ring, 2015, 77, 402.
30 Haghighi M, Shaeri M H, Sedghi A, et al. Nanomaterials(Basel), 2018, 8(12), 1024.
31 Ranjan R, Bajpai V. Journal of Composite Materials, 2021, 55(17), 2369.
32 Wei L X, Liu X Y, Zheng S T, et al. Materials Chemistry and Physics, 2021, 269, 124763.
33 Hu Z R, Tong G Q, Nian Q, et al. Composites Part B:Engineering, 2016, 93, 352.
34 Sedehi S M R, Khosravi M, Yaghoubinezhad Y. Ceramics International, 2021, 47(23), 33180.
35 Naseer A, Ahmad F, Aslam M, et al. Materials and Manufacturing Processes, 2019, 34(9), 957.
36 Hu Z, Wang D, Chen C, et al. Journal of Materials Research, 2019, 34(10), 1744.
37 Chu K, Jia C C. Physica Status Solidi a-Applications and Materials Science, 2014, 211(1), 184.
38 Pérez-Bustamante R, Bolaños-Morales D, Bonilla-Martínez J, et al. Journal of Alloys and Compounds, 2014, 615, S578.
39 Yue H Y, Yao L H, Gao X, et al. Journal of Alloys and Compounds, 2017, 691, 755.
40 Thomas T, Zhang C, Sahu A, et al. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2018, 728, 45.
41 Luo J M, Xie J, Xu J L, et al. Materials Reports, 2021, 35(22), 22098(in Chinese).
罗军明, 谢娟, 徐吉林, 等. 材料导报, 2021, 35(22), 22098.
42 Wei L X, Liu X Y, Gao Y Z, et al. Materials & Design, 2021, 197, 109261.
43 Liu J, Hu N, Liu X, et al. Nanoscale Research Letters, 2019, 14(1), 114.
44 Gürbüz M, Mutuk T. Journal of Composite Materials, 2017, 52(4), 543.
45 Mu X N, Cai H N, Zhang H M, et al. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2018, 725, 541.
46 Mu X N, Cai H N, Zhang H M, et al. Materials & Design, 2018, 140, 431.
47 Lin Z Q, Zheng W, Li H, et al. Acta Metallurgica Sinica, 2021, 57(1), 111(in Chinese).
林彰乾, 郑伟, 李浩, 等. 金属学报, 2021, 57(1), 111.
48 Hu Z R, Tong G Q, Zhang C, et al. China Surface Engineering, 2015, 28(6), 127(in Chinese).
胡增荣, 童国权, 张超, 等. 中国表面工程, 2015, 28(6), 127.
49 Zhang Z Y, Liang Y L, Cao H Q, et al. Materials Research Express, 2019, 6(11), 115609
50 Zhao H Y, Zhang M, Yu J S, et al. Titanium Industry Progress, 2022, 39(2), 29(in Chinese).
赵会宇, 张媚, 于佳石, 等. 钛工业进展, 2022, 39(2), 29.
51 Li S, Sun B, Imai H, et al. Composites Part A: Applied Science and Manufacturing, 2013, 48, 57.
52 Cao Z, Li J L, Zhang H P, et al. Journal of Iron and Steel Research International, 2020, 27(11), 1357.
53 Zhang B, Zhang F M, Saba F, et al. Journal of Alloys and Compounds, 2021, 859, 157777.
54 Mu X N, Cai H N, Zhang H M, et al. Carbon, 2018, 137, 146.
55 Lu J W, Dong L L, Liu Y, et al. Composites Part A: Applied Science and Manufacturing, 2020, 136, 108330.
56 Dong L L, Xiao B, Jin L H, et al. Ceramics International, 2019, 45(15), 19370.
57 Shin S E, Choi H J, Hwang J Y, et al. Scientific Reports, 2015, 5, 16114.
58 Yu J S, Zhao Q Y, Huang S X, et al. Journal of Alloys and Compounds, 2021, 879, 160346.
59 Yan Q, Chen B, Zhang B, et al. Journal of Alloys and Compounds, 2022, 893, 162183.
60 Geng Y, Wang S J, Kim J K. Journal of Colloid and Interface Science, 2009, 336(2), 592.
61 Wei T, Luo G, Fan Z, et al. Carbon, 2009, 47(9), 2296.
62 Kuilla T, Bhadra S, Yao D, et al. Progress in Polymer Science, 2010, 35(11), 1350.
63 Li M X, Che H W, Liu X Y, et al. Journal of Materials Science, 2014, 49(10), 3725.
64 Ghodrati H, Ghomashchi R. Flatchem, 2019, 16, 100113.
65 Duan T, Jin L H, Liang M, et al. Materials Reports, 2022, 36(S2), 308(in Chinese).
段涛, 金利华, 梁明, 等. 材料导报, 2022, 36(S2), 308.
66 Guo Y H, Yu K, Niu J Z, et al. Journal of Materials Research and Technology, 2021, 15, 6871.
67 Wang J, Zhang F M, Shang C Y, et al. Acta Materiae Compositae Sinica, 2020, 37(12), 3137(in Chinese).
王娟, 张法明, 商彩云, 等. 复合材料学报, 2020, 37(12), 3137.
68 Huang L J, Geng L, Peng H X. Progress in Materials Science, 2015, 71, 93.
69 Sun F, Wang K X, Yang H, et al. Titanium Industry Progress, 2019, 36(1), 8(in Chinese).
孙峰, 王凯旋, 杨辉, 等. 钛工业进展, 2019, 36(1), 8.
70 Gürbüz M, Mutuk T, Uyan P. Metals and Materials International, 2020, 27(4), 744.
71 Wang W, Zhou H X, Wang Q J, et al. Ordnance Material Science and Engineering, 2019, 42(1), 26(in Chinese).
王伟, 周海雄, 王庆娟, 等. 兵器材料科学与工程, 2019, 42(1), 26.
72 Su Y, Zuo Q, Yang G, et al. Rare Metal Materials and Engineering, 2017, 46(12), 3882(in Chinese).
苏颖, 左倩, 杨刚, 等. 稀有金属材料与工程, 2017, 46(12), 3882.
73 Yu J S, Zhao Q Y, Zhao Y Q, et al. Journal of Materials Research and Technology, 2021, 15, 3683.
74 Song Y, Liu W, Sun Y, et al. Nanomaterials(Basel), 2021, 11(6), 1440.
75 De Cicco M, Konishi H, Cao G, et al. Metallurgical and Materials Transactions A, 2009, 40(12), 3038.
[1] 张霞, 吴瑛, 袁牧锋, 王春栋. MOFs衍生物在尿素氧化中的研究进展[J]. 材料导报, 2024, 38(6): 23020193-10.
[2] 长俊钢, 陈玉, 何静, 梁奇银, 雷晓波, 蔡芳共, 张勤勇. 热电器件界面性能的研究现状[J]. 材料导报, 2024, 38(6): 22080238-13.
[3] 刘文欢, 胡静, 赵忠忠, 杜任豪, 万永峰, 雷繁, 李辉. 铅冶炼渣基生态胶凝材料的研发及重金属固化[J]. 材料导报, 2024, 38(6): 22120057-8.
[4] 马彬, 黄启钦, 肖薇薇, 黄小林. 钢渣-偏高岭土基导电地聚合物的压敏性能研究[J]. 材料导报, 2024, 38(6): 22040039-6.
[5] 汪愿, 孙运刚, 符彬, 刘文浩, 宣善勇, 刘鹏. 基于VARI工艺的碳纤维复合材料快速修理飞机铝合金裂纹的研究[J]. 材料导报, 2024, 38(6): 22020135-6.
[6] 霍海峰, 杨雅静, 孙涛, 樊戎, 蔡靖, 胡彪. 有压与无压烧结雪无侧限抗压强度对比试验研究[J]. 材料导报, 2024, 38(5): 23060124-6.
[7] 姚志华, 张建华, 辛建平, 穆锐. 风积砂-黄土混合料与钢界面的环形剪切力学特性[J]. 材料导报, 2024, 38(5): 23070012-8.
[8] 程雨竹, 马林建, 王磊, 耿汉生, 高康华, 谭仪忠. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土的动力特性[J]. 材料导报, 2024, 38(5): 23070191-7.
[9] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[10] 朱本清, 余红发, 巩旭, 吴成友, 麻海燕. 除冰盐冻融作用下混凝土界面粘结强度与界面过渡区细观力学性能的关系[J]. 材料导报, 2024, 38(5): 22070190-7.
[11] 董健苗, 何其, 周铭, 王振宇, 庄佳桥, 邹明璇, 李万金. 石墨烯水泥砂浆抗碳化试验及预测模型分析[J]. 材料导报, 2024, 38(5): 22070184-6.
[12] 张学鹏, 张戎令, 杨斌, 肖鹏震, 王小平, 龙朝飞. 冻融-硫酸盐腐蚀耦合作用下早龄期混凝土强度演变及预测模型研究[J]. 材料导报, 2024, 38(5): 22080059-9.
[13] 都思哲, 张淼, 张玉, Selyutina Nina, Smirnov Ivan, 马树娟, 董晓强, 刘元珍. 基于CT图像三维重建的高温下再生混凝土孔隙特征研究[J]. 材料导报, 2024, 38(5): 22060128-11.
[14] 孙茂钧, 胡涛, 栾红波, 李茜, 佘祖新, 柏遇合, 王玲, 杨小奎, 周堃. 胶粘剂在湿热环境下的老化行为规律及环境损伤机理[J]. 材料导报, 2024, 38(5): 22090006-6.
[15] 周新博, 付景顺, 苑泽伟, 钟兵, 刘涛, 唐美玲. 石墨烯纳米带的制备技术及应用研究现状[J]. 材料导报, 2024, 38(4): 22080114-11.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed