Please wait a minute...
材料导报  2024, Vol. 38 Issue (5): 23070012-8    https://doi.org/10.11896/cldb.23070012
  特种工程材料 |
风积砂-黄土混合料与钢界面的环形剪切力学特性
姚志华1,*, 张建华2, 辛建平1, 穆锐3
1 空军工程大学机场建筑工程系,西安 710038
2 中国建筑西南勘察设计研究院有限公司,成都 610052
3 中国人民解放军陆军勤务学院,重庆 401331
Ring Shear Characteristics Between Aeolian Sand-Loess Mixtures and Steel Interface
YAO Zhihua1,*, ZHANG Jianhua2, XIN Jianping1, MU Rui3
1 Department of Airdrome Construction Engineering, Air Force Engineering University, Xi'an 710038, China
2 China Southwest Geotechnical Investigation & Design Institute Co., Ltd., Chengdu 610052, China
3 Army Logistics Academy of PLA, Chongqing 401331, China
下载:  全 文 ( PDF ) ( 15898KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 黄土高原北侧与诸多沙漠接壤,形成了广泛分布的风积砂-黄土混合区。不同比例条件下的风积砂-黄土混合料会呈现不同的物理力学特征,且风积砂-黄土混合料地基现场施工和使用过程中常与其他材料产生界面接触力学行为,相关研究目前鲜有述及。鉴于此,本工作获得了不同掺砂率条件下的混合料最大干密度,配制相同压实度和不同掺砂率的风积砂-黄土混合料环状试样,开展不同竖向压力和剪切速率条件下的混合料与钢制界面的环形剪切试验,借助扫描电镜观测不同混合料的颗粒分布特征以及颗粒破碎特征,揭示风积砂-黄土混合料与钢制界面环形条件下的残余强度形成机制。结果表明,随着掺砂率的增大,风积砂-黄土混合料的物理力学特征由黄土向砂土过渡。竖向压力小于100 kPa条件下,混合料产生剪胀的概率增大。混合料与钢界面之间的残余强度与竖向压力呈线性关系,变化趋势符合摩尔-库仑定律。随着掺砂率的增大,风积砂颗粒破碎效应增大,混合料与钢界面之间的残余内摩擦角及残余黏聚力均会减小。剪切速率的增大会缩短混合料与钢界面之间的接触时间,两者之间的接触、咬合效应尚不足以发挥作用进而减小了界面残余强度。研究结果预测了风积砂中掺入黄土的比例,可以为风积砂地基处理提供有益参考,也可为风积砂-黄土混合料施工力学行为研究提供科学借鉴。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姚志华
张建华
辛建平
穆锐
关键词:  风积砂-黄土混合料  钢界面  环剪试验  界面残余强度    
Abstract: The northern side of the Loess Plateau is bordered by many deserts, forming a widely distributed mixed distribution area of aeolian sand and loess. The aeolian sand-loess mixture (ASLM) presents different physical and mechanical characteristics under different proportion conditions, and the interfacial contact mechanical behavior of the ASLM foundation of ten occurs with other materials during field construction, and the relevant research is rarely mentioned at present. This work obtained the maximum dry density of the ASLM under different sand content conditions, prepared circular specimens of the ASLM with the same compaction degree and different sand content, and conducted ring shear tests on the interface between the ASLM and steel under different vertical pressures and shear velocities. The particle distribution properties and particle fragmentation characteristics of different sand content were observed using scanning electron microscopy, and the formation mechanism of resi-dual strength of ASLM with steel in ring shear condition was revealed. The test results show that the physical and mechanical characteristics of ASLM transition from loess to sandy soil with the increase of sand content. When the vertical pressure is less than 100 kPa, the probability of dilatancy of the mixture increases. There is a linear relationship between the interface residual strength and vertical pressure between the ASLM and the steel, which is consistent with the Mohr-Coulomb law. As the sand content increases, the crushing effect of aeolian sand particles increases, and the interfacial residual internal friction angle and the interfacial residual cohesion between the ASLM and steel decrease. An increase in shear rate shorten the contact time between the mixture and the steel interface, making it difficult to exert the contact and bite effects between the two, thereby reducing the residual strength of the interface between ASLM and steel. The research results predict the proportion of loess added to aeolian sand, which can provide useful reference for the treatment of aeolian sand foundation and also provide scientific reference for revealing the construction mechanics of ASLM.
Key words:  aeolian sand-loess mixture    steel interface    ring shear test    interface residual strength
出版日期:  2024-03-10      发布日期:  2024-03-18
ZTFLH:  TU411  
基金资助: 国家自然科学基金面上项目(11972374);陕西省重点研发计划项目(2022SF-084)
通讯作者:  *姚志华,空军工程大学机场建筑工程教研系副教授、硕士研究生导师。2012年12月获得解放军后勤工程学院岩土工程专业工学博士学位。主要从事非饱和土与特殊土理论研究及应用方面的教学科研与实践工作。主持国家自然科学基金(面上项目和青年科学基金项目)2项、军委后勤科研项目(重点项目)1项、军委科技委基础加强计划技术领域项目基金1项、陕西省重点研发计划项目1项。以第一作者和通信作者身份发表SCI和EI论文20余篇,出版学术专著2部,参与编写行业标准1部。担任国家自然科学基金通讯函评专家。 lightbright@163.com   
引用本文:    
姚志华, 张建华, 辛建平, 穆锐. 风积砂-黄土混合料与钢界面的环形剪切力学特性[J]. 材料导报, 2024, 38(5): 23070012-8.
YAO Zhihua, ZHANG Jianhua, XIN Jianping, MU Rui. Ring Shear Characteristics Between Aeolian Sand-Loess Mixtures and Steel Interface. Materials Reports, 2024, 38(5): 23070012-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23070012  或          http://www.mater-rep.com/CN/Y2024/V38/I5/23070012
1 Du S S, Hong B, Wang L, et al. Geological Survey of China, 2018, 5(6), 83 (in Chinese).
杜少少, 洪勃, 王力, 等. 中国地质调查, 2018, 5(6), 83.
2 Ma T, Tang K F. Subgrade Engineering, 2010(5), 145 (in Chinese).
马涛, 唐开富. 路基工程, 2010(5), 145.
3 Zhu B, Yang X, Liu Z, et al. Environmental Earth Sciences, 2012, 66(1), 337.
4 Elipe M, Lopez-Querol S . Construction & Building Materials, 2014, 73(30), 728.
5 Mengistu A G, Rensburg L V, Mavimbela S . Catena, 2017, 158, 184.
6 Zhu Z D, Wu Z, Liu S, et al. An introduction to china desert, Science Press, China, 1980 (in Chinese).
朱震达, 吴正, 刘恕, 等. 中国沙漠概论, 科学出版社, 1980.
7 Yuan Y Q, Wang X C. Chinese Journal of Geotechnical Engineering, 2007, 29(3), 360 (in Chinese).
袁玉卿, 王选仓. 岩土工程学报, 2007, 29(3), 360.
8 Li Z Y. Research compaction mechanism and roadbed carring capacity of the eolian sand. Ph. D. Thesis, Chongqing Jiaotong University, China, 2003(in Chinese).
李志勇. 风积砂的压实机理及路用承载力研究. 博士学位论文, 重庆交通学院, 2003.
9 Wang G T, Wang X M, Lang L L. Journal of Desert Research, 2016(2), 281(in Chinese).
王广涛, 王训明, 郎丽丽. 中国沙漠, 2016(2), 281.
10 Meng Y H, Dong X K, Lyu Y Q. Journal of Henan Polytechnic University (Natural Science Edition), 2009, 28(3), 347 (in Chinese).
孟永会, 董秀坤, 吕远强. 河南理工大学学报(自然科学版), 2009, 28(3), 347.
11 Luo J W, Li X A, Zhao N, et al. Journal Engineering Geology, 2016, 24(5), 915(in Chinese).
骆建文, 李喜安, 赵宁, 等. 工程地质学报, 2016, 24(5), 915.
12 Deng X J, Sun L. Vehicle-ground structure system dynamics, People's Communications Press, China, 2000(in Chinese).
邓学钧, 孙璐. 车辆-地面结构系统动力学, 人民交通出版社, 2000.
13 Yan S W, Lin S, Jia Z L, et al. Chinese Journal of Geotechnical Enginee-ring, 2018, 40(3), 495 (in Chinese)
闫澍旺, 林澍, 贾沼霖, 等. 岩土工程学报, 2018, 40(3), 495.
14 Sheng S, Feng Z, Feng D C, et al. Cold Regions Science and Technology, 2020, 176, 103090.
15 Potyondy J G. Geotechnique, 1961, 11(4), 339.
16 Hong C X, Guo Q Z, Du Z C. Advanced Materials Research, 2011, 243-249, 2332.
17 Lin P Y, Guo P F, Guo C C, et al. Chinese Journal of Geotechnical Engineering, 2023, 45(1), 85 (in Chinese).
林沛元, 郭潘峰, 郭成超, 等. 岩土工程学报, 2023, 45(1), 85.
18 Uesugi M. Soils & Foundations, 1986, 26(4), 139.
[1] 栗培龙, 裴仪, 胡晋川, 胡伟. 电石渣稳定土抗压强度影响因素及预估模型研究[J]. 材料导报, 2021, 35(22): 22092-22097.
[2] 倪航天, 黄煜镔. 固化土微观测试评价方法述评[J]. 材料导报, 2021, 35(9): 9168-9173.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed