Please wait a minute...
材料导报  2024, Vol. 38 Issue (23): 23090001-6    https://doi.org/10.11896/cldb.23090001
  无机非金属及其复合材料 |
黏土-膨润土混合土衬里的渗透特性试验研究
林海1,2,*, 时花豹1, 周创兵1,2, 吕志涛1
1 南昌大学工程建设学院,南昌 330031
2 教育部流域碳中和工程研究中心,南昌 330031
Experimental Study on Hydraulic Conductivity of Clay-Bentonite Mixed Soil Liner
LIN Hai1,2,*, SHI Huabao1, ZHOU Chuangbing1,2, LYU Zhitao1
1 School of Infrastructure Engineering, Nanchang University, Nanchang 330031, China
2 Watershed Carbon Neutrality Engineering Research Center of the Ministry of Education, Nanchang University, Nanchang 330031, China
下载:  全 文 ( PDF ) ( 4326KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 防渗衬里屏障是污染源防控中至关重要的一环,在黏土中掺入膨润土形成混合土衬里可以综合体现经济和防渗两方面的优势,但要在工程中推广此类混合土衬里尚需对其渗透特性进行系统研究。本工作以黏土掺入钠基膨润土形成的混合土衬里为研究对象,利用大尺寸柔性壁渗透仪开展了不同初始压实度、膨润土掺比和周围压力条件下的渗透试验,对比分析了各条件下黏土-膨润土混合土衬里的水力渗透特性。试验结果表明:黏土中掺入质量比5%钠基膨润土后形成的混合土衬里渗透系数显著低于压实黏土衬里,混合土衬里的渗透系数受初始压实度和周围压力的作用影响要显著弱于压实黏土衬里;保障同等防渗效果的基础上,黏土-膨润土混合土衬里对初始压实度的施工要求要低于黏土衬里;约50 kPa的周围压力能够使混合土衬里较容易地满足现有工程防渗规定。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林海
时花豹
周创兵
吕志涛
关键词:  黏土  膨润土掺比  渗透系数  压实度  周围压力    
Abstract: Impervious liner barrier is a crucial part in pollution prevention and control. Adding bentonite into clay to form a mixed soil liner can integrate the advantages of economy and impermeable effect, but the promotion of this kind of mixed soil liner in engineering application needs to farther systematic understanding of its hydraulic conductivity characteristics. Here, to the mixed soil liner sample with general clay and sodium bentonite, permeability tests are carried out using the large-size flexible wall permeameter under different initial degree of compaction, bentonite mixing ratios and confining pressures, and the hydraulic conductivity characteristics of the clay-bentonite mixed soil liner are comparatively analyzed under various conditions. The test results indicate that the hydraulic conductivity of the mixed soil liner with 5% sodium bentonite is significantly lower than that of the compacted clay liner, and the effect of initial degree of compaction and confining pressure on the hydraulic conductivity of mixed soil liner is significantly less than that of compacted clay liner. To ensure the similar anti-seepage effect, the clay-bentonite mixed soil liner have lower construction requirement for initial compactness than the conventional clay liner. The confining pressure of about 50 kPa can make the mixed soil liner easily meet the existing engineering impermeable regulations.
Key words:  clay    bentonite mixing ratio    hydraulic conductivity    degree of compaction    confining pressure
出版日期:  2024-12-10      发布日期:  2024-12-10
ZTFLH:  TU411.4  
基金资助: 国家自然科学基金(42060218;41702324);江西省自然科学基金(20242BAB23048;20224BAB203039)
通讯作者:  * 林海,南昌大学工程建设学院副教授、硕士研究生导师。2007年获土木工程专业学士学位,2010年获岩土工程专业硕士学位,2014年获岩土工程专业博士学位。主要从事环境岩土工程和土工合成材料相关的科学研究工作。linhai@ncu.edu.cn   
作者简介:  时花豹,1997年7月生,2019年6月于东华理工大学大学获得工学学士学位,2023年6月于南昌大学获得硕士学位。在林海副教授的指导下进行研究。主要研究领域为环境岩土工程。
引用本文:    
林海, 时花豹, 周创兵, 吕志涛. 黏土-膨润土混合土衬里的渗透特性试验研究[J]. 材料导报, 2024, 38(23): 23090001-6.
LIN Hai, SHI Huabao, ZHOU Chuangbing, LYU Zhitao. Experimental Study on Hydraulic Conductivity of Clay-Bentonite Mixed Soil Liner. Materials Reports, 2024, 38(23): 23090001-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23090001  或          http://www.mater-rep.com/CN/Y2024/V38/I23/23090001
1 Liu S Y, Zhan L T, Hu L M, et al. China Civil Engineering Journal, 2016, 49(3), 6 (in Chinese).
刘松玉, 詹良通, 胡黎明, 等. 土木工程学报, 2016, 49(3), 6.
2 Wan Y, Xue Q, Zhao L Y, et al. Rock and Soil Mechanics, 2015, 36(3), 679 (in Chinese).
万勇, 薛强, 赵立业, 等. 岩土力学, 2015, 36(3), 679.
3 Han Z W, Lin H, Shi J Y. Chinese Journal of Geotechnical Engineering, 2021, 43(5), 962 (in Chinese).
韩卓韦, 林海, 施建勇. 岩土工程学报, 2021, 43(5), 962
4 Lin H, Zeng Y F, Zhou C B, et al. Rock and Soil Mechanics, 2023, 44(2), 355 (in Chinese).
林海, 曾一帆, 周创兵, 等. 岩土力学, 2023, 44(2), 355.
5 Xie H J, Zhan L T, Chen Y M, et al. China Civil Engineering Journal, 2011, 44(7), 133 (in Chinese).
谢海建, 詹良通, 陈云敏, 等. 土木工程学报, 2011, 44(7), 133.
6 Xiao C Z, Tao Z Q, Zhang J L, et al. Journal of Changjiang River Scientific Research Institute, 2023, 40(1), 132(in Chinese).
肖成志, 陶子琪, 张金利, 等. 长江科学院院报, 2023, 40(1), 132.
7 Peng M, Bi J C, Zhu Y, et al. Journal of Hydraulic Engineering, 2020, 51(11), 1347 (in Chinese).
彭铭, 毕竞超, 朱艳, 等. 水利学报, 2020, 51(11), 1347.
8 Liu Y L, Su Y P, Yin Y, et al. Materials Reports, 2021, 35(5), 5040 (in Chinese).
刘益良, 苏幼坡, 殷尧, 等. 材料导报, 2021, 35(5), 5040.
9 Xu H Q, Zhou A Z, Jiang P M, et al. Rock and Soil Mechanics, 2019, 40(S1), 424 (in Chinese).
徐浩青, 周爱兆, 姜朋明, 等. 岩土力学, 2019, 40(S1), 424.
10 Ma Z Q, Xiao M, Ming Z Y. Environmental Ecology, 2019, 1(1), 19 (in Chinese).
马志强, 肖满, 明中远. 环境生态学, 2019, 1(1), 19.
11 Liu C S, Liu Z D, Wang C D. Chinese Journal of Rock Mechanics and Engineering, 2002(3), 434 (in Chinese).
刘川顺, 刘祖德, 王长德. 岩石力学与工程学报, 2002(3), 434.
12 Mei Y, Tian X Y, Hu C M, et al. Materials Reports, 2020, 34(14), 14087 (in Chinese).
梅源, 田新宇, 胡长明, 等. 材料导报, 2020, 34(14), 14087.
13 Sivapullaiah P V, Sridharan A, Stalin V K. Canadian Geotechnical Journal, 2000, 37(2), 406.
14 Yeo S S, Shackelford C D, Evans J C. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(10), 1189.
15 Malusis M A, Barben E J, Evans J C. Journal of Geotechnical and Geoenvironmental Engineering. 2009, 135(5), 664.
16 Fu X L, Du Y J, You X Y, et al. Chinese Journal of Geotechnical Engineering, 2021, 43(4), 706 (in Chinese).
傅贤雷, 杜延军, 尤星源, 等. 岩土工程学报, 2021, 43(4), 706.
17 Gao G R. Modern soil properties. Nanjing, Southeast University Press, China, 1990, pp: 117 (in Chinese).
高国瑞. 近代土质学. 南京, 东南大学出版社, 1990, pp: 117.
18 Yan X Q, Fang Y G, Zhang P. Chinese Journal of Geotechnical Engineering, 2011, 33(8), 1302 (in Chinese).
闫小庆, 房营光, 张平. 岩土工程学报, 2011, 33(8), 1302.
19 Wan Z E, Li S C, Zhao S S, et al. China Civil Engineering Journal, 2022, 55(3), 83 (in Chinese).
万泽恩, 李树忱, 赵世森, 等. 土木工程学报, 2022, 55(3), 83.
20 Chu Y, Liu S Y, Xu L, et al. China Civil Engineering Journal, 2019, 52(z2), 23 (in Chinese).
储亚, 刘松玉, 徐磊, 等. 土木工程学报, 2019, 52(z2), 23.
21 Fan R D, Du Y J, Reddy K R, et al. Applied Clay Science, 2014, 101.
22 Du Y J, Fan R D, Liu S Y, et al. Engineering Geology, 2015(195), 195.
23 Zhang W J, Jia W Q, Zhang G G, et al. Chinese Journal of Geotechnical Engineering, 2013, 35(11), 2076 (in Chinese).
张文杰, 贾文强, 张改革, 等. 岩土工程学报, 2013, 35(11), 2076.
24 Chen Y G, Lei H N, He Y, et al. Journal of Central South University (Science and Technology), 2018, 49(4), 910 (in Chinese).
陈永贵, 雷宏楠, 贺勇等. 中南大学学报(自然科学版), 2018, 49(4), 910.
25 Li C F. Permeability and evaluation of impervious material of stone chips mixed with bentonite. Master's Thesis, ZheJiang University of technology, China, 2019 (in Chinese).
李翠凤. 石屑掺膨润土防渗材料渗透特性及其评价. 硕士学位论文, 浙江工业大学, 2019.
26 Lin W B, Ning G X, Ma L N, et al. Journal of Yangtze River Scientific Research Institute, 2024, 41(4), 1 (in Chinese).
蔺文博, 宁贵霞, 马丽娜, 等. 长江科学院院报, 2024, 41(4), 1.
27 Yang B, Miao H B, Yang Z, et al. Science Technology and Engineering, 2023, 23(1), 46 (in Chinese).
杨犇, 缪海波, 杨震, 等. 科学技术与工程, 2023, 23(1), 46.
28 Tao G, Li Y, Liu L, et al. Journal of Hydrologic Engineering, 2022(7), 27.
29 Zhang Z, Wang Y, Xu H, et al. Waste Management & Research, 2018, 36(5), 471.
30 Ge S Q, Jiang W H, Zheng L W, et al. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(S2), 3464 (in Chinese).
葛尚奇, 江文豪, 郑凌逶, 等. 岩石力学与工程学报, 2022, 41(S2), 3464.
31 Chen J N. Compatibility of geosynthetic clay liners with leachate from ccp landfills. Ph. D. thesis, Southwest Jiaotong University, China, 2018 (in Chinese).
陈剑楠. 土工合成织物粘土衬垫与燃煤产物渗滤液的化学相容性研究. 博士学位论文, 西南交通大学, 2018.
32 Wang X J, Qi C Z, Zhou L A, et al. Materials Reports, 2022, 36(Z1), 21100220-6 (in Chinese).
王晓娇, 戚承志, 周理安, 等. 材料导报, 2022, 36(Z1), 21100220-6.
33 Shackelford C D, Benson C H, Katsumi T, et al. Geotextiles and Geomembranes, 2000.
34 Wang B, Chen B, Dou T T, et al. China Environmental Science, 2020, 40(2), 701 (in Chinese).
王宝, 陈彬, 窦桐桐, 等. 中国环境科学, 2020, 40(2), 701.
35 Wang B, Dong X L. Rock and Soil Mechanics, 2017, 38(5) (in Chinese).
王宝, 董兴玲. 岩土力学, 2017, 38(5).
36 Chen J N. Benson C. H. , Edil T. B. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(3), 04018008.
37 Benson C H, Chen J N, Edil T B, et al. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(4).
38 Zhu X R, Xie X Y, Wang Z H, et al. China Civil Engineering Journal, 2004(10), 52 (in Chinese).
朱向荣, 谢新宇, 王朝晖, 等. 土木工程学报, 2004(10), 52.
[1] 王志良, 陈玉龙, 申林方, 施辉盟. 偏高岭土基地聚合物对水泥固化红黏土的改善机制[J]. 材料导报, 2024, 38(8): 22080080-7.
[2] 石磊, 房佳明, 张建伟, 张欢, 边汉亮, 徐向春. 考虑干密度影响的EICP矿化粉砂土渗透特性试验研究[J]. 材料导报, 2024, 38(23): 23090044-7.
[3] 冯国瑞, 姚鑫, 王帅, 姚顺, 韩艳娜, 黄丽, 侯凯. 黏土矿物材料在煤矿注浆领域的研究进展与前景展望[J]. 材料导报, 2024, 38(19): 23070167-11.
[4] 吴浪, 鲍蓉, 戴健, 雷斌. 石灰石-煅烧黏土-水泥(LC3)体系的水化动力学模型[J]. 材料导报, 2024, 38(15): 23020253-6.
[5] 李凯, 杨璐璐, 史才军. 基于不规则骨料堆积结构的混凝土水渗透性的研究[J]. 材料导报, 2024, 38(12): 23010131-8.
[6] 陈永亮, 成亮, 陈铁军, 陈君宝, 张轶轲, 夏加庚. 砖混建筑垃圾制备蒸压加气混凝土性能及水化机理[J]. 材料导报, 2024, 38(12): 22060287-6.
[7] 张铖, 王玲, 姚燕, 史鑫宇. 碳化混凝土孔隙结构与Autoclam气体渗透性能的关联性研究[J]. 材料导报, 2023, 37(8): 21080026-5.
[8] 尚玺, 赵啟行, 杨华明. 黏土矿物基催化材料的研究进展[J]. 材料导报, 2023, 37(17): 21110283-9.
[9] 尹升华, 曹永, 吴爱祥, 侯永强, 杨世兴. 料浆浓度与絮凝剂单耗对膏体堆存渗透性及破坏研究[J]. 材料导报, 2022, 36(24): 21070202-6.
[10] 杨小龙, 申爱琴, 刘贵勇, 蒋宜馨, 吴寒松. 考虑隧道阻燃的纳米黏土/ATH复合改性沥青优化设计[J]. 材料导报, 2022, 36(21): 20090343-8.
[11] 孙志雅, 孟宇航, 杨华明. 黏土矿物基载药体系的研究进展[J]. 材料导报, 2022, 36(2): 20110152-10.
[12] 吴贤国, 王雷, 陈虹宇, 冯宗宝, 覃亚伟, 徐文胜. 基于随机森林-NSGAⅡ高性能混凝土耐久性配合比的多目标优化研究[J]. 材料导报, 2022, 36(17): 20110015-7.
[13] 解维闵, 梁晓正, 赵晓光, 杨华明. 黏土矿物基纳米复合阻燃材料的研究进展[J]. 材料导报, 2021, 35(23): 23192-23204.
[14] 高育欣, 刘明, 曾超, 王福涛, 王鹏, 叶子, 张磊. 机制砂表面改性技术研究与应用[J]. 材料导报, 2021, 35(22): 22072-22078.
[15] 卿艳红, 苏小丽, 王钺博, 周琴, 文科, 马灵涯, 陈情泽, 朱建喜. 蒙脱石黏土矿物环境材料构建的研究进展[J]. 材料导报, 2020, 34(19): 19018-19026.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed