Please wait a minute...
材料导报  2022, Vol. 36 Issue (21): 20090343-8    https://doi.org/10.11896/cldb.20090343
  无机非金属及其复合材料 |
考虑隧道阻燃的纳米黏土/ATH复合改性沥青优化设计
杨小龙1,*, 申爱琴2, 刘贵勇1, 蒋宜馨1, 吴寒松2
1 广西大学土木建筑工程学院, 南宁 530004
2 长安大学公路学院,西安 710064
Optimum Design of Nano-clay/ATH Composite Modified Asphalt Considering Tunnel Flame Retardant Properties
YANG Xiaolong1,*, SHEN Aiqin2, LIU Guiyong1, JIANG Yixin1, WU Hansong2
1 College of Civil Engineering and Architecture, Guangxi University, Nanning 530004
2 School of Highway, Chang'an University, Xi'an 710064, China
下载:  全 文 ( PDF ) ( 5391KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为提高隧道沥青材料阻燃性能,选取不同类型纳米黏土(膨润土(OMMT)和层状双金属氢氧化物(LDH))和金属氢氧化铝(ATH)进行复掺制备复合改性沥青,并采用三大指标和极限氧指数(LOI)试验方法,对不同复合改性沥青的性能进行表征,在此基础上,利用综合指数法,通过多指标分析优选复合改性沥青的最佳配比,并采用热重(TG)测试方法,对优化的复合改性沥青的热解特性进行测试。结果表明,ATH/纳米黏土复合改性材料降低了沥青材料的针入度和延度并提高了其软化点,ATH/OMMT复合改性材料对沥青材料三大指标的影响程度高于ATH/LDH复合改性材料;与ATH单掺改性沥青相比,ATH/纳米黏土复合改性沥青的LOI值显著增大,两者表现出良好的协同阻燃作用,ATH/OMMT改性沥青的协同作用明显优于ATH/LDH改性沥青,而改性剂粒径对沥青性能的影响较小;基于综合指数分析方法,最终优选OMMT和ATH进行纳米复合改性沥青的制备,其中ATH掺量优选为10%,OMMT掺量为1%和3%(质量分数)。热重测试结果表明,复合改性沥青的热解成炭率显著提高,其成炭性与其阻燃性能具有良好的相关性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨小龙
申爱琴
刘贵勇
蒋宜馨
吴寒松
关键词:  隧道路面  阻燃沥青  纳米黏土  金属氢氧化铝(ATH)  协同阻燃    
Abstract: To improve the flame retardant performance of tunnel asphalt pavement, different types of nano clay, bentonite (OMMT) and layered double metal hydroxide (LDH), and aluminum hydroxide (ATH) were selected to prepare composite modified asphalt. The performance of different composite modified asphalt was characterized by three-index tests and limit oxygen index (LOI) test. On this basis, the optimal ratio of composites in modified asphalt was optimized by multi-index analysis. Additionally, the pyrolysis characteristics of the optimized composite modified asphalt were investigated by thermogravimetric (TG). The results show that the penetration and ductility of the modified asphalt are reduced, while the softening point is increased, with the addition of nano-clay/ATH composites. The influence of ATH/OMMT composite on the three indexes of asphalt material is more obvious than that of ATH/LDH composite. Compared with ATH modified asphalt, the LOI value of ATH/NC modified asphalt is significantly increased, and the synergistic effect of ATH/OMMT modified asphalt is obviously better than that of ATH/LDH modified asphalt. What's more, ATH and OMMT show good synergistic flame retardancy. A particle size of modifier has slight effect on the performance of asphalt. Based on the comprehensive index analysis method, OMMT and ATH are selected to prepare nano composite modified asphalt, with the content of ATH 10%, OMMT 1% and 3%. The results of TG test show that the char residual of the composite modified asphalt is significantly higher than that of the control, and the char residual of the composite modified asphalt has a good correlation with its flame retardant performance.
Key words:  tunnel pavement    flame retardant asphalt    nano clay    aluminum hydroxide (ATH)    synergistic flame retardant
出版日期:  2022-11-10      发布日期:  2022-11-03
ZTFLH:  U414  
基金资助: 广西研究生教育创新计划资助项目(YCSW2022074);广西科技计划项目(桂科AD21238001);广西自然科学基金项目(2022GXNSFBA035587)
通讯作者:  * xiaolongyang@gxu.edu.cn   
作者简介:  杨小龙,广西大学讲师、硕士研究生导师。2020年7月,在长安大学获得道路与铁道工程专业工学博士学位,毕业后于广西大学土木建筑工程学院任教。以第一及通信作者发表SCI、EI等高水平论文20余篇。目前主要从事路面材料、路面结构以及公路养护新技术等方向的研究,主持并参与完成了国家自然科学基金项目、广西交通运输部科技项目、陕西省自然科学基金项目、广西科技计划项目等多项科研课题。
引用本文:    
杨小龙, 申爱琴, 刘贵勇, 蒋宜馨, 吴寒松. 考虑隧道阻燃的纳米黏土/ATH复合改性沥青优化设计[J]. 材料导报, 2022, 36(21): 20090343-8.
YANG Xiaolong, SHEN Aiqin, LIU Guiyong, JIANG Yixin, WU Hansong. Optimum Design of Nano-clay/ATH Composite Modified Asphalt Considering Tunnel Flame Retardant Properties. Materials Reports, 2022, 36(21): 20090343-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090343  或          http://www.mater-rep.com/CN/Y2022/V36/I21/20090343
1 Luo G. Tunnel Construction, 2019, 39(8), 1380 (in Chinese).
罗刚. 隧道建设(中英文), 2019, 39(8),1380.
2 Jiang S P, Lin Z, Wang S F. Tunnel Construction, 2019, 39(7),1217(in Chinese).
蒋树屏, 林志, 王少飞. 隧道建设(中英文), 2019, 39(7), 1217.
3 Tao X, Huang X, Zhao Y. Fire Safety Journal, 2011,46(6), 330.
4 Yang Q, Zhongyin G. Road Materials & Pavement Design, 2005,6(2), 255.
5 Zhu K. Study on calcium-based flame retardant nanocomposites base on multi-components combustion charactreristics of asphalt.Ph.D. Thesis, Zhejiang University, China, 2015 (in Chinese).
朱凯. 基于沥青多组分燃烧特性的钙基纳米复合阻燃体系研究. 博士学位论文, 浙江大学, 2015.
6 Tao X, Wang H, Huang X, et al. Fuel, 2013,105(2), 757.
7 Qiu J, Yang T, Wang X, et al. Construction and Building Materials, 2019,195,468.
8 Kiliaris P, Papaspyrides C D. Progress in Polymer Science, 2010,35(7), 902.
9 Wei J G, Xie C, Fu Q L. China Journal of Highway & Transport, 2013,26(6),30.
10 Liu S, Zhou S B, Xu Y. Construction and Building Materials, 2018,175, 196.
11 Yang X, Shen A, Guo Y, et al. Road Materials and Pavement Design, 2021,22(8),1708.
12 Iskender E. Measurement, 2016,93,359.
13Yang X, Shen A, Liang M, et al. Construction and Building Materials, 2021,109, 125077.
14 Yang X, Shen A, Liu G, et al. Construction and Building Materials, 2022,317, 125981.
15 Yang X, Shen A, Jiang Y, et al. Construction and Building Materials, 2021,302, 124148.
16 Zhu K, Wang Y H, Tang D Q, et al. Materials, 2019, 12(5), 801.
17 Xia W J, Wang S W, Xu T, et al. Construction and Building Materials, 2021, 266, 121203.
18 Zhang H, Shi C, Han J, et al. Construction & Building Materials, 2013,40(7),1151.
19 Pei J, Wen Y, Li Y, et al. Construction and Building Materials, 2014,72, 41.
20 Bonati A, Merusi F, Bochicchio G, et al. Construction and Building Materials, 2013,47, 990.
21 Li M, Pang M, Chen M, et al. Materials, 2018, 11(10), 1939.
22 Yang X, Shen A, Su Y, et al. Construction and Building Materials, 2020, 236,117576.
23 Pei J, Yong W, Li Y, et al. Construction & Building Materials, 2014,72(72),41.
24 Guang F Y. Study of asphalt flame retardant and decreasing viscosity for asphalt pavement mixture in tunnle. Master's Thesis,Chang'an University, China, 2015 (in Chinese).
关甫洋. 隧道沥青路面混合料阻燃降粘技术研究. 硕士学位论文,长安大学, 2015.
25 Xiong J P, Peng W J, Chen Y, et al. Journal of Chang'an University(Natural Science Edition), 2019, 39(2), 47 (in Chinese).
熊剑平, 彭文举, 陈宇, 等. 长安大学学报(自然科学版), 2019, 39(2),47.
26 Tang X, Han N, He Z, et al. Journal of Building Materials, 2010,13(4), 550.
27 Fang F F. Design and performance of fire-retarding the asphalt with the nano-flame retardants. Master's Thesis,Chongqing Jiaotong University, China, 2012 (in Chinese).
范芳芳. 纳米复合阻燃沥青的设计与性能研究. 硕士学位论文,重庆交通大学, 2012.
28 Li L H, Zou X L, Chen C Y. Journal of Building Materials, 2013, 16(1), 76.
李立寒, 邹小龙, 陈春羽.建筑材料学报, 2013,16(1), 76.
29 Tang Q Y. Data processing system—experimental design, statistical analysis and data mining, Science Press, China,2010 (in Chinese).
唐启义. DPS数据处理系统——实验设计、统计分析及数据挖掘, 科学出版社, 2010.
30 Liang Y S. Preparation of flame-retardant bitumen with aluminium trihydroxide/layered sillicate and their synergetic mechanism.Master's Thesis,Wuhan University of Technology, China, 2013 (in Chinese).
梁永胜. 氢氧化铝/层状硅酸盐阻燃沥青的制备及其协同阻燃机理研究. 硕士学位论文,武汉理工大学, 2013.
[1] 李文博, 张双侠, 史倩倩, 于明明. 新疆严寒区UV老化下的沥青路面抗损劣性能研究[J]. 材料导报, 2022, 36(21): 21100120-6.
[2] 纪小平, 孙恩永, 代聪, 周荣征. 铁尾矿沥青混合料的路用性能研究[J]. 材料导报, 2022, 36(21): 21050004-7.
[3] 屈鑫, 丁鹤洋, 王超, 刘玉, 汪海年. 基于分子动力学模拟技术的生物质油改性沥青微观性能研究[J]. 材料导报, 2022, 36(19): 21050106-6.
[4] 王凤, 肖月, 崔培德, 磨炼同, 方明镜. 集料形态特征对沥青混合料性能影响规律的研究进展[J]. 材料导报, 2022, 36(17): 21030063-13.
[5] 彭远胜, 欧孝夺, 姬凤玲. 铝土尾矿泡沫轻质土的物理力学性能及细观特征[J]. 材料导报, 2022, 36(17): 21030274-6.
[6] 徐光霁, 范剑伟, 马涛, 朱雅婧, 李树仁. 高掺量废胎胶粉改性沥青性能研究[J]. 材料导报, 2022, 36(16): 21120239-8.
[7] 李辉, 杨洁, 付凯敏, 张毅, 张犁, 朱耀庭, 俞博. 基于胶浆特性的透水混凝土强度及抗冻性研究[J]. 材料导报, 2022, 36(16): 21110275-8.
[8] 张吉哲, 王静, 李岩, 唐小丹, 许成虎, 王业飞, 苏纪壮, 张国扬, 何亮. 沥青胶浆-集料界面水盐侵蚀损伤规律研究[J]. 材料导报, 2022, 36(16): 22040097-9.
[9] 金娇, 刘墨晗, 刘帅, 陈柏臻, 刘欣宇. 基于生态路面减排理念下的CeO2柱撑蒙脱土改性沥青及其催化性能研究[J]. 材料导报, 2022, 36(16): 22040157-7.
[10] 虞将苗, 马远跃, 张园, 于华洋, 邹桂莲. 高粘SBS改性乳化沥青就地冷再生混合料抗裂性能评价[J]. 材料导报, 2022, 36(16): 22040412-7.
[11] 杨彦海, 王汉彬, 杨野. 冻融循环作用下乳化沥青冷再生混合料空隙特性[J]. 材料导报, 2022, 36(16): 21110128-7.
[12] 陈潇, 卢亚磊, 王稷良, 杜新宇. 基于风积沙特性的固化剂组成设计及其固化机理研究[J]. 材料导报, 2022, 36(16): 21110087-8.
[13] 刘芳, 王旗, 张翛, 彭义军, 刘晓东. 老化对废机油再生沥青流变特性的影响及机理[J]. 材料导报, 2022, 36(16): 22040405-6.
[14] 姚 震, 张凌波, 梁鹏飞, 王仕峰, 颜川奇. 多种湿法橡胶改性沥青的综合性能评价与改性机理研究[J]. 材料导报, 2022, 36(16): 21120124-7.
[15] 周志刚, 周扬, 刘智仁. 透水沥青混合料动态模量影响因素分析[J]. 材料导报, 2022, 36(13): 21010221-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed