Please wait a minute...
材料导报  2022, Vol. 36 Issue (21): 21050004-7    https://doi.org/10.11896/cldb.21050004
  无机非金属及其复合材料 |
铁尾矿沥青混合料的路用性能研究
纪小平1,*, 孙恩永1, 代聪2, 周荣征2
1 长安大学公路学院,西安 710064
2 四川省交通运输发展战略和规划科学研究院,成都 610041
Road Performances of Asphalt Mixture Integrated with Iron Tailings
JI Xiaoping1,*, SUN Enyong1, DAI Cong2, ZHOU Rongzheng2
1 School of Highway, Chang'an University, Xi'an 710064, China
2 Institute of Transportation Development Strategy & Planning of Sichuan Province, Chengdu 610041, China
下载:  全 文 ( PDF ) ( 7111KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铁尾矿是主要工业固废之一,其堆放造成了严重的土地浪费和环境污染,将其用于沥青路面建设是高质量、规模化利用的有效方式。为考察铁尾矿沥青混合料(IT-AC)的路用性能随铁尾矿体积掺量的变化规律,本工作设计了不同铁尾矿体积掺量的IT-AC,并进行马歇尔试验、车辙试验、浸水车辙试验、浸水马歇尔试验、冻融劈裂试验、低温弯曲试验和动态模量试验。结果表明,铁尾矿的主要化学成分是SiO2且含量超过65%(质量分数),属酸性集料,其压碎值与磨耗值均偏高;铁尾矿表面比天然集料具有更多的空隙,吸附了部分沥青,因此IT-AC的沥青用量随着铁尾矿体积掺量的增加而变大;IT-AC的60 ℃马歇尔稳定度、动稳定度、浸水动稳定度、残留稳定度、冻融劈裂强度比、低温弯拉应变和动态模量均随铁尾矿掺量的增加而降低,说明IT-AC的路用性能随铁尾矿体积掺量的增加而降低,铁尾矿的体积掺量不宜超过40%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
纪小平
孙恩永
代聪
周荣征
关键词:  铁尾矿  沥青混合料  路用性能  铁尾矿物化性质    
Abstract: Iron tailings is one of the main industrial solid wastes, and its stacking leads serious problems, such as land occupation and environmental pollution. Recycling iron tailings in asphalt pavement is an effective way of high-quality and large-scale utilization. In this work, the asphalt mixtures integrated with iron tailings (IT-AC) were prepared, and the indoor experiments were conducted including Marshall test, rutting test, water immersion rutting test, water immersion Marshall test, freeze-thaw splitting test, low temperature bending test and dynamic modulus test, in order to comprehensively explore the influence of the iron tailings volumeteric content on the road performances of IT-AC. The results show that the iron tailings contains more than 65%(mass fraction) SiO2 and thus is a kind of acidic aggregate, as well as has relatively high crush value and abrasion value. More micro-cracks appear in the surface of iron tailings than that in the natural aggregates and partly absorb asphalt, therefore the asphalt content in IT-AC increases with the increasing of the iron tailings content. The 60 ℃ Marshall stability, dynamic stability, water immersion dynamic stability, residual stability, freeze-thaw splitting strength ratio, low-temperature flexural strain and dynamic modulus of IT-AC all decrease with the increasing of the iron tailings volumetric content, indicating that the increase of iron tailings content makes the road performance of IT-AC worse. It is recommended that the volumetric content of iron tailings integrated in asphalt mixture should not exceed 40%.
Key words:  iron tailings    asphalt mixture    road performance    mineralogical properties of iron tailings
出版日期:  2022-11-10      发布日期:  2022-11-03
ZTFLH:  U414  
基金资助: 四川省交通运输科技项目(2019-D-04)
通讯作者:  * jixp82@163.com   
作者简介:  纪小平,工学博士,长安大学公路学院教授、博士研究生导师。2005年于长安大学公路学院公路与城市道路工程本科毕业,2008年于长安大学材料学院材料学硕士毕业,2011年于长安大学公路学院道路与铁道工程博士毕业。重点研究方向为路面固体废弃物回收利用、路面材料自修复、路面压电能量转化理论与利用技术和环保型路面材料等。主持或作为骨干成员参与科技项目20余项,以第一或通信作者发表SCI/EI论文40余篇,授权国家发明专利近20项。
引用本文:    
纪小平, 孙恩永, 代聪, 周荣征. 铁尾矿沥青混合料的路用性能研究[J]. 材料导报, 2022, 36(21): 21050004-7.
JI Xiaoping, SUN Enyong, DAI Cong, ZHOU Rongzheng. Road Performances of Asphalt Mixture Integrated with Iron Tailings. Materials Reports, 2022, 36(21): 21050004-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050004  或          http://www.mater-rep.com/CN/Y2022/V36/I21/21050004
1 Liang Y T, Zhao Z X. Modern Mining, 2020, 36(11), 156(in Chinese).
梁艳涛, 赵振兴.现代矿业, 2020, 36(11), 156.
2 Kang Y, Zhang Y Z, Jiang M F, et al. In: 2017 National Blast Furnace Ironmaking Academic Annual Conference, Yunnan, 2017,pp.616 (in Chinese).
康月, 张玉柱, 姜茂发, 等. 2017年全国高炉炼铁学术年会, 云南, 2017,pp. 616.
3 Liu A P, Cao M J, Zhang X T.China Metal Bulletin, 2019(11), 279(in Chinese).
刘爱平, 曹苗佳, 张雄涛.中国金属通报, 2019(11), 279.
4 Qiu K. Study on the new process of re concentration of Panzhihua fine grained ferrotitanium tailings. Master's Thesis, Kunming University of Science and Technology,China, 2018(in Chinese).
邱凯. 攀枝花微细粒钛铁尾矿再选新工艺研究. 硕士学位论文, 昆明理工大学, 2018.
5 Liu W B, Yao H Y, Wang J F, et al. Materials Reports, 2020, 34(S1), 268(in Chinese).
刘文博, 姚华彦, 王静峰,等. 材料导报, 2020, 34(S1), 268.
6 Yang Y D, Liu X L, Zhang B, et al.Industrial Minerals & Processing, 2021, 50(1), 28(in Chinese).
杨亚东, 刘新亮, 张冰,等. 化工矿物与加工, 2021, 50(1), 28.
7 Zhang N, Tang B W, Liu X M.Construction and Building Materials, 2021, 288(23),52.
8 Cui Z H. Combined remediation and improvement techniques of plant-microorganism in utilization of iron tailings. Master's Thesis, Shandong University, China, 2018(in Chinese).
崔照豪. 铁尾矿土壤化利用植物—微生物联合修复与改良技术研究.硕士学位论文, 山东大学, 2018.
9 Li H T. Research and development of iron tailing based filling material and its properties. Master's Thesis, Shandong University, China, 2020(in Chinese).
李恒天. 铁尾矿基充填材料研发及性能研究. 硕士学位论文, 山东大学, 2020.
10 Chu C, Deng Y, Zhou A, et al.Construction and Building Materials, 2018, 189(6), 35.
11 Yu X. Study on preparation and crystallization properties of building glass-ceramics from iron tailings. Master's Thesis, Shenyang Jianzhu University, China, 2017(in Chinese).
于欣. 铁尾矿建筑微晶玻璃的制备及其析晶性能研究. 硕士学位论文, 沈阳建筑大学, 2017.
12 Bao W, Li H X, et al. International Journal of Minerals Metallurgy & Materials, 2015, 22(12), 1342.
13 Yao R, Liao S Y, Dai C L, et al. Journal of Magnetism & Magnetic Materials, 2015, 378, 367.
14 Magalhães L F D, França S, Oliveira M D S, et al. Journal of Cleaner Production, 2020, 274(12),23
15 Liu Y X. Leaching removal of hazardous metals from iron tailings and its preparation of glass ceramics. Master's Thesis, Guangdong University of Technology, China, 2020(in Chinese).
刘雨昕. 铁尾矿中重金属的淋洗去除及其制备微晶玻璃的研究. 硕士学位论文, 广东工业大学, 2020.
16 Wan L. The apply of iron tailings as subgrade materials. Master's Thesis, Central South University, China, 2014(in Chinese).
万磊. 铁尾矿用作路面基层材料的研究, 硕士学位论文. 中南大学, 2014.
17 Tian Z W. Performance evaluation and improvement measures of iron tai-lings asphalt mixture. Master's Thesis, Harbin Institute of Technology, China, 2018(in Chinese).
田知文. 铁尾矿沥青混合料性能评价及改善措施研究. 硕士学位论文, 哈尔滨工业大学, 2018.
18 Velasquez R, Turos M, Moon K H, et al. Construction & Building Materials, 2009, 23(9), 3070.
19 Lan J J, E Y H.Low Temperature Architecture Technology, 2016, 38(11), 12(in Chinese).
兰晶晶, 鄂宇辉.低温建筑技术, 2016, 38(11), 12.
20 Zhang B H, Yu T H, Han X R. et al.Journal of Wuhan University of Technology(Transportation Science & Engineering), 2019, 43(3), 481(in Chinese).
张宝虎, 余天航, 韩先瑞,等.武汉理工大学学报(交通科学与工程版), 2019, 43(3), 481.
21 Han X R, Zhang B H, Yu T H, et al. Journal of Transport Science and Engineering, 2019, 35(2), 6(in Chinese).
韩先瑞, 张宝虎, 余天航,等.交通科学与工程, 2019, 35(2), 6.
22 Shi Y N. Research on iron tailings sand in the application of asphalt mixture. Master's Thesis, Dalian University of Technology, China, 2015(in Chinese).
时彦宁. 铁尾矿砂在沥青混合料中的应用研究.硕士学位论文, 大连理工大学, 2015.
23 Zhang T Z, Wu J.Highway, 2015, 60(6), 207(in Chinese).
张铁志, 吴进.公路, 2015, 60(6), 207.
24 Liu H, Yang L Y, Wang J G, et al. In: 2012 Chinese Association for Science and Technology Academic Activity Month for Young Scientists on Both Sides of the Taiwan Strait-the First Cross-Strait Highway Traffic Development Forum. Jiangsu, 2012,pp.329 (in Chinese).
柳浩, 杨丽英, 王建国,等. 2012中国科协海峡两岸青年科学家学术活动月——首届两岸四地公路交通发展论坛. 江苏, 2012,pp.329.
25 Lu J T, Kong L J, Fan Z R, et al. Journal of Building Materials,2022, 25(6),585(in Chinese).
卢佳涛, 孔丽娟, 樊子瑞, 等.建筑材料学报, 2022, 25(6),585.
26 Lu C, Chen H Y, Fu L J, et al. Materials Reports, 2021, 35(5), 5011 (in Chinese).
路畅, 陈洪运, 傅梁杰, 等. 材料导报, 2021, 35(5), 5011.
27 Zhang Y J, Chen S S, Fu Z Z, et al.Chinese Journal of Geotechnical Engineering, 2020, 42(S2), 61(in Chinese).
张意江, 陈生水, 傅中志, 等. 岩土工程学报, 2020, 42(S2), 61.
28 Ren P. Research of the pavement performance of stone matrix asphalt mixtures using basalt and limestone aggregates. Master's Thesis, Shandong University, China, 2013(in Chinese)
任鹏. 石灰岩与玄武岩集料SMA路用性能研究.硕士学位论文,山东大学, 2013.
29 Xiao Q Y, Yu T H, Chen X Y, et al. Journal of Chongqing Jiaotong University(Natural Science), 2020, 39(5), 85(in Chinese).
肖庆一, 余天航, 陈向阳,等. 重庆交通大学学报(自然科学版), 2020, 39(5), 85.
30 Luo L Q, Shu W, Cheng Q L. et al.Chemical Industry and Engineering Progress, 2017, 36(4), 1482(in Chinese).
罗立群, 舒伟, 程琪林,等. 化工进展, 2017, 36(4), 1482.
[1] 丁滔, 金珊珊, 索智, 季节, 张扬. 嵌锁式沥青稳定碎石配合比设计及性能研究[J]. 材料导报, 2022, 36(Z1): 22030296-5.
[2] 屠艳平, 陈国夫, 程子扬, 程书凯. 纳米SiO2对再生骨料沥青混凝土性能的影响[J]. 材料导报, 2022, 36(Z1): 22030139-5.
[3] 张永军, 罗文波. 重复荷载下玄武岩纤维沥青混合料的永久变形及其分数阶黏弹塑性模型[J]. 材料导报, 2022, 36(9): 21020108-7.
[4] 王威娜, 周圣雄, 秦煜. 室内反射裂缝试验方法研究进展[J]. 材料导报, 2022, 36(5): 20090234-10.
[5] 李文博, 张双侠, 史倩倩, 于明明. 新疆严寒区UV老化下的沥青路面抗损劣性能研究[J]. 材料导报, 2022, 36(21): 21100120-6.
[6] 王凤, 肖月, 崔培德, 磨炼同, 方明镜. 集料形态特征对沥青混合料性能影响规律的研究进展[J]. 材料导报, 2022, 36(17): 21030063-13.
[7] 周雯怡, 易军艳, 陈卓, 冯德成. 泡沫沥青冷再生混合料界面黏附性提升原理与路用性能验证[J]. 材料导报, 2022, 36(16): 21110120-9.
[8] 姚玉权, 仰建岗, 高杰, 何亮, 许竞. 就地热再生沥青混合料的材料组成波动及控制策略[J]. 材料导报, 2022, 36(16): 22030098-10.
[9] 周志刚, 周扬, 刘智仁. 透水沥青混合料动态模量影响因素分析[J]. 材料导报, 2022, 36(13): 21010221-7.
[10] 王英, 杨熙, 姜继斌, 李萍, 念腾飞. 动水冲刷作用下季冻区沥青混合料水损害发展的细观过程[J]. 材料导报, 2022, 36(10): 21040158-7.
[11] 陈飞, 张林艳, 封基良, 马永, 赵雁斌. 沥青混合料低温抗裂性能试验方法研究进展[J]. 材料导报, 2021, 35(z2): 127-137.
[12] 索智, 谭祎天, 谢聪聪. 基于灰度分析的抑尘沥青混合料微宏观性能关联研究[J]. 材料导报, 2021, 35(Z1): 258-263.
[13] 王民, 樊向阳, 王滔, 罗蓉, 胡德勇, 石晨光. 无损状态下钢桥面沥青铺装材料变形恢复特性[J]. 材料导报, 2021, 35(Z1): 269-273.
[14] 吴金荣, 崔善成, 李飞, 洪荣宝. 煤矸石粉/聚酯纤维沥青混合料低温抗裂性研究[J]. 材料导报, 2021, 35(6): 6078-6085.
[15] 路畅, 陈洪运, 傅梁杰, 田光燕, 张红, 梁金生, 杨华明. 铁尾矿制备新型建筑材料的国内外进展[J]. 材料导报, 2021, 35(5): 5011-5026.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed