Please wait a minute...
材料导报  2022, Vol. 36 Issue (13): 21010221-7    https://doi.org/10.11896/cldb.21010221
  无机非金属及其复合材料 |
透水沥青混合料动态模量影响因素分析
周志刚*, 周扬, 刘智仁
长沙理工大学道路结构与材料交通行业重点实验室,长沙 410114
Analysis of Influencing Factors on Dynamic Modulus of Porous Asphalt
ZHOU Zhigang*, ZHOU Yang, LIU Zhiren
Key Laboratory of Road Structure and Materials, Transportation Industry, Changsha University of Science and Technology, Changsha 410114,China
下载:  全 文 ( PDF ) ( 3211KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了给透水沥青路面结构分析、设计和养护提供依据,便于其工程推广应用,利用简单性能试验仪(SPT)开展透水沥青混合料(PA)动态模量的三轴压缩试验,研究空隙率、围压、加载频率、温度等因素对动态模量和相位角的影响规律,并对各因素进行灰色关联度分析。研究结果表明:空隙率对动态模量和相位角的综合影响最大,围压对两者的影响相对较小,而加载频率、温度分别主要影响动态模量、相位角。透水沥青混合料动态模量具有明显的热流变特性、频率特性和应力依赖性。动态模量随空隙率增大或温度升高而减小,随围压或加载频率增大而增大。动态模量在低温时的频率特性和高温时的应力依赖性均较强。相位角反映出不同条件下,透水沥青混合料黏弹性特征变化规律不同。随着温度的逐渐升高,黏性特征逐渐明显,在高频(低频)下,当温度升至25 ℃(40 ℃)之后,黏性特征又逐渐减弱。围压的增大会增强透水沥青混合料的弹性特征,而空隙率的增大会使其黏性特征明显。低温时,随着加载频率的增大,透水沥青混合料的黏性滞后特征减弱,高温时则相反。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周志刚
周扬
刘智仁
关键词:  透水沥青混合料  动态模量  相位角  三轴压缩试验  影响因素  灰色关联度    
Abstract: The triaxial compression test of dynamic modulus of porous asphalt (PA) was carried out by using simple performance tester (SPT) to study the influence of air voids, confining pressure, loading frequency and temperature on dynamic modulus and phase angle in order to provide the basis for the structural analysis, design and maintenance of porous asphalt pavement, so as to promote its engineering application. Meanwhile, the grey correlation analysis was performed concurrently. The results show that the air voids has the greatest influence on the dynamic modulus and phase angle, while the confining pressure has relatively slight influence on them, and that the loading frequency and temperature mainly affect the dynamic modulus and phase angle respectively. The dynamic modulus of porous asphalt has obvious thermal and rheological properties, frequency characteristics and stress dependence. The dynamic modulus decreases with increasing void fraction or temperature and increases with increasing surrounding pressure or loading frequency. The dynamic modulus has strong frequency characteristics at low temperatures and stress dependence at high temperatures. The phase angle reflects that the viscoelastic characteristics of porous asphalt change differently under different conditions. With the increase of temperature, the viscosity characteristics become more obvious. When the temperature rises to 25 ℃(40 ℃) respectively at high frequency (low frequency), the viscosity characteristics gradually weaken. The increase of confining pressure will enhance the elastic characteristics of porous asphalt, while the increase of air voids can make the viscosity characteristics obvious. At low temperature, the viscosity hysteresis characteristics of porous asphalt abates with the increase of loading frequency, but it is opposite at high temperature.
Key words:  porous asphalt    dynamic modulus    phase angle    triaxial compression test    influence factors    grey correlation degree
出版日期:  2022-07-10      发布日期:  2022-07-12
ZTFLH:  U414  
通讯作者:  * zhou_zgcs@sina.com   
作者简介:  周志刚,教授,博导,国务院特殊津贴获得者,交通部首批新世纪“十百千人才工程”第一层次人选。1983年至1991年就读于清华大学,获工程力学与建筑结构工程工学双学士学位、固体力学工学硕士学位,毕业后一直在长沙交通学院从事道路工程教学与科研工作;2003年6月毕业于中南大学获得道路与铁道工程专业工学博士学位,现任长沙理工大学道路结构与材料交通行业重点实验室主任。主要从事道路工程领域研究。获得国家科技进步二等奖1项(排名第二),国家专利20余项,在国内外期刊发表论文200余篇,出版学术专著、教材4部,参编国家标准、规范2部。
引用本文:    
周志刚, 周扬, 刘智仁. 透水沥青混合料动态模量影响因素分析[J]. 材料导报, 2022, 36(13): 21010221-7.
ZHOU Zhigang, ZHOU Yang, LIU Zhiren. Analysis of Influencing Factors on Dynamic Modulus of Porous Asphalt. Materials Reports, 2022, 36(13): 21010221-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010221  或          http://www.mater-rep.com/CN/Y2022/V36/I13/21010221
1 Elvik R,Greibe P. Accident Analysis and Prevention, 2005, 37(3), 515.
2 Yang Q, Guo Z Y, Lin X X. Journal of Tongji University (Natural Science), 2005, 33(3), 316 (in Chinese).
杨群,郭忠印,蔺习雄. 同济大学学报(自然科学版), 2005, 33(3), 316.
3 Moriyoshi A, Jin T, Nakai T, et al. Construction and Building Materials, 2013, 42, 190.
4 Zhang Z W, Sha A M, Liu X, et al. Construction and Building Mate-rials, 2020, 262,119998.
5 Zhou W, Huang X M.China Journal of Highway and Transport, 2014, 27(7), 10 (in Chinese).
周韡,黄晓明. 中国公路学报, 2014, 27(7), 10.
6 Zhang Y N, Wang L B, Zhang W, et al. International Journal of Pavement Engineering, 2016, 17(9), 818.
7 Meng A X, Xu H N, Fu X G, et al. China Journal of Highway and Transport, 2019, 32(2),31 (in Chinese).
孟安鑫,徐慧宁,傅锡光,等. 中国公路学报, 2019, 32(2),31.
8 Wei J C, Cui S P, Hu J B. Journal of Building Materials, 2008, 11(6), 657 (in Chinese).
韦金城,崔世萍,胡家波. 建筑材料学报, 2008, 11(6), 657.
9 JTG D50-2017 公路沥青路面设计规范, 人民交通出版社, 2017.
10 AASHTO A. Mechanistic-empirical pavement design guide: A manual of practice. American Association of State Highway and Transportation Officials, America, 2008.
11 Shan J S, Wu S Y. Journal of Building Materials, 2016, 19(1), 124 (in Chinese).
单景松,吴淑印. 建筑材料学报, 2016, 19(1), 124.
12 Li Y, Sun L J, Hu Y, et al. China Journal of Highway and Transport, 2020, 33(10), 304 (in Chinese).
李伊,孙立军,胡玥,等. 中国公路学报, 2020, 33(10),304.
13 Zhao Y Q, Tang J M, Liu H. Construction and Building Materials, 2012, 37, 21.
14 Hou R, Guo Z Y. Journal of Building Materials, 2013, 16(3), 525 (in Chinese).
侯睿,郭忠印. 建筑材料学报, 2013, 16(3), 525.
15 Li Q,Li G F, Wang H C. Journal of Building Materials, 2014, 17(5), 816 (in Chinese).
李强,李国芬,王宏畅. 建筑材料学报, 2014, 17(5), 816.
16 Zhang Y N, Wang L B,Diefenderfer B K. Journal of Materials in Civil Engineering, 2016, 28(10), 4016091.
17 Nguyen T H, Ahn J, Lee J, et al. Materials, 2019, 12(8),1230.
18 Goh S W, You Z P. Journal of Transportation Engineering, 2012, 138(1), 90.
19 Arshad A K, Masri K A, Ahmad J,et al. In: Global Congress on Construction, Material and Structural Engineering 2017. Johor Bahru, 2017, pp. 012008.
20 Zhou Z G, Li H J, Liu X, et al. Journal of Building Materials, 2020,23(6), 1430 (in Chinese).
周志刚,李浩嘉,刘鑫,等.建筑材料学报,2020,23(6),1430.
21 JTG T 3350-03-2020 排水沥青路面设计与施工技术规范,人民交通出版社, 2020.
22 Jiang W. Mix design and road performance research on porous asphalt concrete. Master's Thesis, Chang'an University, China, 2008(in Chinese).
蒋玮.透水性沥青路面混合料配合比设计方法与路用性能研究. 硕士学位论文,长安大学,2008.
23 Ma X, Ni F J, Chen R S. China Journal of Highway and Transport, 2008, 21(3), 35 (in Chinese).
马翔,倪富健,陈荣生. 中国公路学报, 2008, 21(3), 35.
24 Zhang X N, Yin Y M, Zou G L. China Journal of Highway and Transport, 2010, 23(4), 1 (in Chinese).
张肖宁,尹应梅,邹桂莲. 中国公路学报, 2010, 23(4), 1.
25 Li P L,Rao W Y,Feng Z G,et al. Journal of Zhengzhou University (Engineering Science), 2016, 37(5), 1 (in Chinese).
栗培龙,饶文宇,冯振刚,等. 郑州大学学报(工学版), 2016, 37(5), 1.
26 Deng J L. Grey system theory tutorial, Huazhong University of Science and Technology Press, China, 1990, pp. 33 (in Chinese).
邓聚龙.灰色系统理论教程,华中理工大学出版社,1990, pp. 33.
27 Liu Z R. Research on dynamic modulus of permeable asphalt concrete. Master's Thesis, Changsha University of Science and Technology, China,2019(in Chinese).
刘智仁. 透水沥青混凝土动态模量研究. 硕士学位论文, 长沙理工大学,2019.
[1] 王俊辉, 黄悦, 杨国涛, 魏琦安, 刘文卓. 再生混凝土抗压性能研究进展[J]. 材料导报, 2022, 36(Z1): 21100033-9.
[2] 林欢, 石启亮, 蔡利海, 刘文言, 李万利. 聚硼硅氧烷剪切增稠凝胶的制备影响因素及其在不同温度下的流变性能研究[J]. 材料导报, 2022, 36(Z1): 21070206-6.
[3] 向鑫, 杨飞龙, 张桂凯, 胡立, 宋雅琪, 朱力桂. 管件内壁电沉积涂层技术的研究进展[J]. 材料导报, 2022, 36(13): 20100118-7.
[4] 董瑞鑫, 申向东, 薛慧君, 刘倩, 维利思, 慕儒. 风积沙混凝土的气泡参数对其强度的影响[J]. 材料导报, 2022, 36(12): 21010006-5.
[5] 李世杰, 黄慧娟, 尚莉莉, 马建峰, 马千里, 刘杏娥. 活性炭净化室内甲醛的研究进展[J]. 材料导报, 2021, 35(z2): 75-80.
[6] 杨燕, 谭康豪, 覃英宏. 混凝土内氯离子扩散影响因素的研究综述[J]. 材料导报, 2021, 35(13): 13109-13118.
[7] 李平, 赵焰杰, 王李波. 基于交互正交试验的304不锈钢冲蚀磨损性能的影响因素研究[J]. 材料导报, 2020, 34(8): 8149-8153.
[8] 肖江, 周书葵, 刘星, 储陆平, 张建, 李智东, 田林玉, 李嘉丽. 层状双金属氢氧化物及其复合材料去除水体中重金属离子的研究进展[J]. 材料导报, 2020, 34(5): 5023-5031.
[9] 王泳丹, 刘子铭, 郝培文. 综论沥青的疲劳损伤自愈合行为:理论研究,评价方法,影响因素,数值模拟[J]. 材料导报, 2019, 33(9): 1517-1525.
[10] 宋雨来, 付洪德, 王震, 杨鹏聪. 镁合金的应力腐蚀开裂:机理、影响因素、防护技术[J]. 材料导报, 2019, 33(5): 834-840.
[11] 刘帅, 马兴元. 封闭型无溶剂聚氨酯的研究进展[J]. 材料导报, 2019, 33(23): 3892-3899.
[12] 朱红梅, 李柏春, 朱锦云, 邱长军, 唐忠锋. 熔盐堆用镍基合金在熔融氟盐中的腐蚀研究进展[J]. 材料导报, 2019, 33(11): 1813-1820.
[13] 刘洋, 庄蔚敏, 施宏达. 自冲铆接头疲劳性能影响因素研究进展[J]. 材料导报, 2019, 33(11): 1825-1830.
[14] 周军, 吴雷, 梁坤, 宋永辉, 张秋利. 微波技术在煤热解工艺中的应用现状[J]. 材料导报, 2019, 33(1): 191-197.
[15] 高礼雄,丁汝茜,姚燕,荣辉,王海良,张磊. 混凝土的微生物腐蚀:机理、影响因素、评价指标及防护技术[J]. 《材料导报》期刊社, 2018, 32(3): 503-509.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed