Please wait a minute...
材料导报  2019, Vol. 33 Issue (11): 1813-1820    https://doi.org/10.11896/cldb.18080069
  核材料 |
熔盐堆用镍基合金在熔融氟盐中的腐蚀研究进展
朱红梅1, 李柏春1, 朱锦云1, 邱长军1, 唐忠锋2
1 南华大学机械工程学院,衡阳 421001
2 中国科学院上海应用物理研究所,上海 201800
Research Progress on Corrosion of Ni-Based Alloy in Molten Fluorine Salt of Molten Salt Reactor
ZHU Hongmei1, LI Baichun1, ZHU Jinyun1, QIU Changjun1, TANG Zhongfeng2
1 School of Mechanical Engineering, University of South China, Hengyang 421001
2 Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800
下载:  全 文 ( PDF ) ( 1474KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 熔盐堆(Molten salt reactor, MSR)是第四代先进核反应堆中唯一的液态燃料反应堆,因在热转化效率、中子经济性、固有安全性、在线燃料循环、核废料处理等方面具有无可比拟的优势而备受国内外研究者的关注。熔盐的选择对MSR的运行安全及效率至关重要。熔融氟化盐如LiF-BeF2(FLiBe)、LiF-NaF-KF(FLiNaK)等具有较小的热中子吸收截面、高热导率、高比热容、良好的流动性、低的蒸气压(高温时)、良好的高温稳定性等一系列优异的热物化性能,被公认为MSR最理想的冷却剂和核燃料载体。目前,国内外均选用镍基合金作为MSR的主要结构材料。然而,超强高温腐蚀性熔融氟盐的存在对镍基合金提出了苛刻的要求。目前,国内外学者们对熔盐堆用镍基合金在熔融氟盐中腐蚀行为的研究主要集中在两个方面:一是镍基合金在熔融氟盐中热腐蚀行为的影响因素及微观机制,二是提高镍基合金的耐高温熔盐腐蚀性能。一般认为,镍基合金在熔融氟盐中的腐蚀机制主要包括以下四种:本质腐蚀、氧化性杂质引起的腐蚀、温差驱动的腐蚀和异种材料引起的腐蚀。因此,合金自身和熔盐腐蚀环境是影响镍基合金在氟盐中热腐蚀行为的两大主要因素。在合金自身方面,主要为合金元素(Ni、Cr、Mo、Fe、Si等)及含量、合金显微组织(晶界特征、组织缺陷等)的影响;在熔盐腐蚀环境方面,主要为熔盐组分、熔盐中的杂质及腐蚀产物、熔盐温度、坩埚材质、核裂变产物等的影响。目前,提高镍基合金耐熔盐腐蚀性能的主要途径有:在镍基合金方面,包括有微合金化(添加Ti、RE等)、晶界工程处理、陶瓷相增强复合材料技术;在熔盐方面,包括熔盐纯化、添加单质金属(如Zr、Be、Li等)降低熔盐的氧化还原势等。此外,采用电镀法、激光熔覆法、化学气相沉积法、等离子喷涂法等表面改性技术在镍基合金上制备金属涂层(Ni、Co、Mo、NiCoCrAlY等)和陶瓷涂层(氮化物如AlN、碳化物如SiC)。本文重点综述了镍基合金在熔融氟盐中热腐蚀行为的主要影响因素及微观机制,以及国内外研究者在提高镍基合金耐高温熔盐腐蚀性能方面的研究进展。针对当前已开发的镍基合金与强腐蚀性的熔融氟盐相容性亟待解决的一些关键基础问题,提出了未来镍基合金在熔融氟盐工程应用中的主要技术方向和发展趋势,为耐高温氟盐腐蚀材料的研究和开发提供重要思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱红梅
李柏春
朱锦云
邱长军
唐忠锋
关键词:  镍基合金  熔融氟盐  腐蚀  影响因素  改善途径    
Abstract: Molten salt reactor (MSR) is the only liquid fueled one in the Generation IV of advanced nuclear reactors, which has attracted worldwide attention due to its incomparable advantages in thermal conversion efficiency, neutron economy, inherent safety, online fuel cycle and nuclear waste treatment. The choice of molten salt is crucial to the operation safety and efficiency of MSR. Fluoride molten salts such as LiF-BeF2 (FLiBe) and LiF-NaF-KF (FLiNaK) have a series of excellent thermal physicochemical properties such as small cross section for thermal neutron absorption, high thermal conductivity, high specific heat capacity, good fluidity, low vapor pressure at high temperature, and good high temperature stability. Fluoride molten salts are generally considered as the optimal coolant and fuel. Currently, Ni-based alloy is used as main structural material of MSR at home and abroad. However, the extremely high temperature corrosion of molten fluoride salt puts forward some harsh requirements for the Ni-based alloys.Currently, the research focus on the corrosion behavior of Ni-based alloys in molten fluoride salt of MSR includes two aspects: one is the factors affecting the hot corrosion behavior of Ni-based alloy in molten fluoride salt and the relative mechanism, while the other is how to improve the corrosion resistance of Ni-based alloys in the high-temperature molten salt. It is generally believed that the corrosion mechanism of Ni-based alloy in molten fluoride salt includes the following four types: essential corrosion, corrosion caused by oxidizing impurities, temperature driven corrosion and corrosion caused by different materials. Therefore, the main factors can be attributed to two aspects: the alloy itself and the molten salt corrosion environment. In terms of the alloy itself, it is mainly affected by the alloy elements (Ni, Cr, Mo, Fe, Si, etc.) and content, the alloy microstructure (grain boundary characteristics, microstructural defects, etc.). Regarding the molten salt corrosion environment, the effects of molten salt components, impurities and corrosion products in molten salt, molten salt temperature, crucible material and fission products are mainly discussed. Besides, the main strategies to improve the corrosion resistance of Ni-based alloys are summarized. For the Ni-based alloys, the methods such as microalloying (adding Ti, RE, etc.), grain boundary engineering treatment, and ceramic phase reinforced composite technology are reviewed. For molten salt, it includes purification of molten salt and addition of pure metals (such as Zr, Be, Li, etc.) to reduce the redox potential of molten salt. In addition, surface modification techniques such as electroplating, laser cladding, chemical vapor deposition, and plasma spraying have been used to prepare metal coatings (Ni, Co, Mo, NiCoCrAlY, etc.) and ceramic coatings (AlN, carbide such as SiC) on Ni-based alloys for the corrosion resistance improvement. This paper mainly summarizes the progress of the above two research focuses, i.e., the factors affecting the hot corrosion behavior of Ni-based alloy in molten fluoride salt and the relative mechanism, as well as the methods improving the corrosion resistance of Ni-based alloys in the high-temperature molten salt. On the basis of some key fundamental problems in the compatibility between Ni-based alloy and strong corrosion-resis-tant molten fluoride salt, the future research directions and tendency of Ni-based alloy applied in the molten fluoride salt are proposed. This paper may provide important ideas for investigating and exploring the corrosion-resistant materials in high-temperature fluoride salt
Key words:  Ni-based alloys    molten fluoride salt    corrosion    influence factors    improvement methods
                    发布日期:  2019-05-21
ZTFLH:  TG174.21  
基金资助: 湖南省教育厅省重点实验室开放基金(15K108);国家自然科学基金(51474130);青海省重大科技专项(2017-GX-A3)
通讯作者:  qiuchangjun106@126.com   
作者简介:  朱红梅,博士,副教授,硕士生导师。2011年6月毕业于华南理工大学材料加工工程专业,先后公派留学于澳大利亚悉尼大学18个月,公派访学于美国普渡大学1年。现任南华大学金属材料与微制造研究所所长,中国机械工程学会表面工程分会青年工作委员会委员,主要从事核装备金属材料安全服役及表面改性技术方面的研究。目前主持国家、省、市厅级自然科学基金项目共6项,以第一作者/通讯作者身份发表SCI/EI论文20余篇。邱长军,博士,教授,博士生导师。2003年6月于中南大学机电工程学院获得博士学位。现任湖南省重点学科机械工程学科带头人,核能装备及其安全服役技术湖南省高校科技创新团队带头人,特殊环境下装备安全服役技术湖南省高校重点实验室主任。长期从事核设施安全工程与退役治理技术、核装备金属材料安全服役及表面改性技术,先后主持了国家自然科学基金重大研究计划项目1项、面上项目3项,国家科技重大专项子项1项。在国内外高影响因子刊物发表论文100多篇。
引用本文:    
朱红梅, 李柏春, 朱锦云, 邱长军, 唐忠锋. 熔盐堆用镍基合金在熔融氟盐中的腐蚀研究进展[J]. 材料导报, 2019, 33(11): 1813-1820.
ZHU Hongmei, LI Baichun, ZHU Jinyun, QIU Changjun, TANG Zhongfeng. Research Progress on Corrosion of Ni-Based Alloy in Molten Fluorine Salt of Molten Salt Reactor. Materials Reports, 2019, 33(11): 1813-1820.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18080069  或          http://www.mater-rep.com/CN/Y2019/V33/I11/1813
1 Uhlí J. Journal of Nuclear Materials,2007,360(1),6.
2 Qiu H Z, Zhang D L, Shu G H, et al. Atomic Energy Science and Technology,2009,43(s),64(in Chinese).
秋穗正,张大林,苏光辉,等.原子能科学技术,2009,43(s),64.
3 Jérôme Serp, Michel Allibert, Ondrej Benes, et al. Progress in Nuclear Energy,2014,77,308.
4 Beneš O, Konings R J M. Journal of Fluorine Chemistry,2009,130(1),22.
5 Wang Y, Tang Z F, Xie L D, et al. Chemistry,2013,76(4),307(in Chinese).
汪洋,唐忠锋,谢雷东,等.化学通报,2013,76(4),307.
6 Patel N S, Pavlík Viliam, Boa Miroslav. Critical Reviews in Solid State and Materials Sciences,2017,42(1),83.
7 Wang Y, Zeng C, Li W. Corrosion Science,2018,136,180.
8 Olson L C, Ambrosek J W, Sridharan K, et al. Journal of Fluorine Chemistry,2009,130(1),67.
9 Xu Y X, Zeng C L. Journal of Chinese Society for Corrosion and Protection,2014,34(3), 211(in Chinese).
徐雅欣,曾潮流.中国腐蚀与防护学报,2014,34(3),211.
10 Wang Y, Liu H, Zeng C. Journal of Fluorine Chemistry,2014,165,1.
11 Sona C S, Gajbhiye B D, Hule P V, et al. Corrosion Engineering, Science and Technology,2014,49(4),287.
12 Ouyang F Y, Chang C H, Kai J J. Journal of Nuclear Materials,2014,446(1-3),81.
13 Qiu J, Zou Y, Li Z J, et al. Nuclear Techniques,2015,38(7),070601(in Chinese).
邱杰,邹杨,李志军,等.核技术,2015,38(7),070601.
14 Zhu Y, Qiu J, Hou J, et al. Journal of Nuclear Materials,2017,492,122.
15 Li X, He S, Zhou X, et al. Journal of Nuclear Materials,2015,464,342.
16 Qiu J, Zou Y, Yu G J, et al. Journal of Nuclear Science and Technology,2015,26,060602.
17 Ouyang F Y, Wang Y S, Wang M Y, et al. Corrosion Engineering, Science and Technology,2014,49(2),101.
18 Gehlbach R, McCoy H. In: International Symposium on Structural Stabi-lity in Superalloys, Seven Springs,1968,pp.346.
19 Holcomb D E, Muralidharan G, Wilson D F. U.S. Patent, EP9540714,2017.
20 Dai Q, Ye X X, Ai H, et al. Corrosion Science,2018,133,349.
21 Liu T, Dong J S, Xie G, et al. Materials Science and Engineering: A,2016,656,75.
22 Liu S, Ye X X, Jiang L, et al. Materials Science and Engineering: A,2016,655,269.
23 Wang Y L, Wang Q, Liu H J, et al. Corrosion Science,2016,109,43.
24 Wang Y L, Wang Q, Liu H J, et al. RSC Advances,2015,5(41),32755.
25 Lin J B, Li A G, He S M, et al. Nuclear Techniques,2014,37(5),050601(in Chinese).
林建波,李爱国,何上明,等.核技术,2014,37(5),050601.
26 Lin J, Li A, Yu X, et al. Journal of Nuclear Science and Technology,2014,51(2),175.
27 Zhu H, Holmes R, Hanley T, et al. Corrosion Science,2017,125,184.
28 Zhu H, Holmes R, Hanley T, et al. Corrosion Science,2015,91,1.
29 Williams D F, Toth L M, Clarno K T. Assessment of candidate molten salt coolants for the advanced high temperature reactor (AHTR), Department of Energy, United States,2006.
30Šimo T, Matal O, Nesvadba L, et al. Zeitschrift für Naturforschung A,2007,62(12),769.
31 Ding X B, Sun H, Yu G J, et al. Journal of Chinese Society for Corrosion and Protection,2015,35(6),543(in Chinese).
丁祥彬,孙华,俞国军,等.中国腐蚀与防护学报,2015,35(6),543.
32 Sawant S S, Gajbhiye B D, Tyagi S, et al. Indian Chemical Engineer,2017,59(3),242.
33 Delpech S, Cabet C, Slim C, et al. Materials Today,2010,13(12),34.
34 Ouyang F Y, Chang C H, You B C, et al. Journal of Nuclear Materials,2013,437(1-3),201.
35 Wang Y, Liu H, Yu G, et al. Journal of Fluorine Chemistry,2015,178,14.
36 Hou J, Yu G, Zeng C, et al. Journal of Fluorine Chemistry,2016,191,110.
37 Liu K, Xu L, Liu Z, et al. Nuclear Techniques,2015,38(2),020602(in Chinese).
刘可,徐良,刘哲,等.核技术,2015,38(2),020602.
38 Ye X X, Ai H, Guo Z, et al. Corrosion Science,2016,106,249.
39 Yin H, Qiu J, Liu H, et al. Corrosion Science,2018,131,355.
40 Lei Q, Liu K, Gao J, et al. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms,2017,404,185.
41 Rosenthal M W, Kasten P R, Briggs R B. Nuclear Applications and Technology,1970,8(2),107.
42 Wang Y, Zeng C, Li W. Corrosion Science,2018,136,180.
43 Scarlat R O, Laufer M R, Blandford E D, et al. Progress in Nuclear Energy,2014,77,406.
44 Olson L, Sridharan K, Anderson M, et al. Journal of Nuclear Materials,2011,411(1-3),51.
45 Fukumoto K, Fujimura R, Yamawaki M, et al. Journal of Nuclear Science and Technology,2015,52(10),1323.
46 Rosenthal M W, Haubenreich P N, Briggs R B. The development status of molten-salt breeder reactors,Oak Ridge, Tennessee,1972, pp.4812.
47 Ai H, Hou J, Ye X X, et al. Journal of Nuclear Materials,2018,503,116.
48 Sellers R S, Cheng W J, Kelleher B C, et al. Nuclear Technology,2014,188(2),192.
49 Cheng H, Leng B, Chen K, et al. Corrosion Science,2015,97,1.
50 McCoy H E, Beatty R L, Cook W H, et al. Nuclear Applications and Technology,1970,8(2),156.
51 Pint B A, Terrani K A, Brady M P, et al. Journal of Nuclear Materials,2013,440(1-3),420.
52 Ignatiev V, Surenkov A, Gnidoy I, et al. Journal of Nuclear Materials,2013,440(1-3),243.
53 Ignatiev V, Surenkov A. Journal of Nuclear Materials,2013,441(1-3),592.
54 Telang A, Gill A S, Tammana D, et al. Materials Science and Enginee-ring: A,2015,648,280.
55 Nie S H, Liang Z Q. Corrosion and Protection,2018(1),29(in Chinese).
聂书红,梁政强.腐蚀与防护,2018(1),29.
56 Shi P, Hu R, Zhang T, et al. Materials Science and Technology,2017,33(1),84.
57 Fu C T, Yinling W, Chu X W, et al. Journal of Nuclear Materials,2017,497,76.
58 Ren W, Muralidharan G, Wilson D F, et al.In: ASME 2011 Pressure Vessels and Piping Conference. American,2011,pp.725.
59 Yang C, Muránsky O, Zhu H, et al. Materials & Design,2017,113,223.
60 Nunes V M B, Queirós C S, Lourenco M J V, et al. Applied Energy,2016,183,603.
61 Zong G, Zhang Z B, Sun J H, et al. Journal of Fluorine Chemistry,2017,197,134.
62 Olander D. Journal of Nuclear Materials,2002,300(2-3),270.
63 Cheng W J, Sellers R S, Anderson M H, et al. Nuclear Technology,2013,183(2),248.
64 Olson L. Transactions of the American Nuclear Society,2015,110,523.
65 Liu Y H, Yang C, Lu Y L, et al. Chinese Journal of Rare Metals,2015,39(10),865(in Chinese).
刘艳红,杨超,陆燕玲,等.稀有金属,2015,39(10),865.
66 Muralidharan G, Wilson D F, Walker L R, et al. Cladding alloys for fluoride salt compatibility,Oak Ridge National Laboratory,2011.
67 Zhu H M, Li B C, Chen M H, et al. Coatings,2018,8,322.
68 Zhu H M, Chen M H, Tang Z F, et al. Rare Metal Materials and Engineering,2018(9),2767(in Chinese).
朱红梅,陈明慧,唐忠锋,等.稀有金属材料与工程,2018(9),2767.
69 Farmer J C. Lawrence Livermore National Laboratory,2008,1,407386.
70 Watanabe T, Kondo M, Nagasaka T, et al. Journal of Plasma and Fusion Research SERIES,2010,9,342.
71 Liu T, Dong J S, Xie G, et al. Acta Metallurgica Sinica,2015,51(9),1059(in Chinese).
刘涛,董加胜,谢光,等.金属学报,2015,51(9),1059.
72 Zhu H M, Li B C, Chen M H, et al. Journal of Fluorine Chemistry,2018,213,80.
73 Brupbacher M C, Zhang D, Buchta W M, et al. Journal of Nuclear Materials,2015,461,215.
74 He X, Song J, Tan J, et al. Journal of Nuclear Materials,2014,448(1-3),1.
75 Wang Y, Tang Z F, Fu Y, et al. Ceramics International,2015,41(10),12996.
76 Gu Y, Liu J X, Wang Y, et al. Journal of the European Ceramic Society,2017,37(7),2575.
77 Yang X, Zhang D, Liu M, et al. Corrosion Science,2016,109,62.
78 Wang H, Feng Q, Wang Z, et al. Corrosion Science,2017,124,131.
79 Yang X, Liu M, Gao Y, et al. Corrosion Science,2016,103,165.
80 Xue W, Yang X, Qiu J, et al. Corrosion Science,2017,114,96.
[1] 范舟, 黄泰愚, 刘建仪. 硫对镍基合金825(100)电子结构影响的密度泛函研究[J]. 材料导报, 2019, 33(z1): 332-336.
[2] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[3] 路小彬. 基于嵌段共聚物的硅表面聚合物刷点阵组装[J]. 材料导报, 2019, 33(z1): 505-509.
[4] 张政, 刘标, 高延敏. 端乙烯基硅氧烷对水性丙烯酸树脂的改性[J]. 材料导报, 2019, 33(z1): 519-522.
[5] 万晔, 刘晶, 谭丽丽, 陈军修, 东家慧, 杨柯. 镁粉表面钙磷涂层的制备与性能[J]. 材料导报, 2019, 33(z1): 283-287.
[6] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[7] 王泳丹, 刘子铭, 郝培文. 综论沥青的疲劳损伤自愈合行为:理论研究,评价方法,影响因素,数值模拟[J]. 材料导报, 2019, 33(9): 1517-1525.
[8] 王一唱, 曹玲飞, 吴晓东, 邹衍, 黄光杰. 石油钻杆用7xxx系铝合金微观组织和性能的研究进展[J]. 材料导报, 2019, 33(7): 1190-1197.
[9] 马晓波, 王进卿, 池作和, 张光学, 詹明秀. h-BN基复合陶瓷涂层防锅炉受热面的硫酸盐腐蚀性能[J]. 材料导报, 2019, 33(6): 960-964.
[10] 温变英, 段磊. PEI/Ni梯度电磁屏蔽薄膜材料耐腐蚀性研究[J]. 材料导报, 2019, 33(6): 1065-1069.
[11] 宋雨来, 付洪德, 王震, 杨鹏聪. 镁合金的应力腐蚀开裂:机理、影响因素、防护技术[J]. 材料导报, 2019, 33(5): 834-840.
[12] 张潇华, 于思荣, 郭丽娟, 周扬理. 硅含量对Al-Si-Cu相变储能材料腐蚀性的影响[J]. 材料导报, 2019, 33(4): 582-585.
[13] 方振邦, 张志强, 李颖, 尹华, 邢艳双, 何长树. 7N01S-T5铝合金厚板搅拌摩擦焊接头的晶间腐蚀行为[J]. 材料导报, 2019, 33(2): 304-308.
[14] 周亮, 陈送义, 彭振凌, 张星临, 范淑敏, 昌江郁, 袁丁玲, 陈康华1,2,3. 微量Co对7056铝合金组织与腐蚀性能的影响[J]. 材料导报, 2019, 33(2): 314-320.
[15] 钟晓聪, 陈芳会, 王瑞祥, 徐志峰. 硫酸体系铅基阳极稳定性研究进展[J]. 材料导报, 2019, 33(17): 2862-2867.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed