Material Composition Volatility and Control Strategy for Hot In-place Recycling Asphalt Mixture
YAO Yuquan1, YANG Jiangang2,3, GAO Jie1,2,3,*, HE Liang4, XU Jing2,3
1 School of Highway, Chang'an University, Xi'an 710064, China 2 School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, China 3 Institute of Road Engineering, East China Jiaotong University, Nanchang 330013, China 4 National and Local Joint Engineering Laboratory of Traffic Civil Engineering Materials, Chongqing Jiaotong University, Chongqing 400074, China
Abstract: The material composition volatility of hot in-place recycling asphalt mixture (HIRAM) has an important impact on the construction quality and durability of asphalt pavement during the construction process. To control the material composition volatility of HIRAM, in this work, the material composition control strategy for the design stage of HIRAM was proposed. To this end, the HIRAM material composition categories were analyzed, the relational model between the different materials was established, and a strategy for dividing the construction unit of the hot in-place recycling maintenance section was proposed by considering the perspective of refinement control. In addition, according to the relational model between recycled asphalt pavement (RAP) material composition and the amount of hot mix asphalt (HMA), the HIRAM material composition volatility control strategy was proposed by using Fréchet similarity and K-Means clustering theory from the aspect of controlling the volatility of HIRAM material composition. Furthermore, the feasibility of the control strategy was demonstrated in the project of the Dechang Expressway in Jiangxi Pro-vince. The results show that the HIRAM material composition control strategy can effectively control the volatility to meet the design and/or specification requirements when RAP material composition and HMA ratio are significantly different. Meanwhile, the results of the study can provide a new way to control the HIRAM material composition and ensure the construction quality during the hot in-place recycling construction process.
作者简介: 姚玉权,2016年7月、2019年6月分别于华东交通大学获得工学学士学位和硕士学位。现为长安大学公路学院博士研究生,师从郑木莲教授。目前主要从事再生沥青路面结构与材料方面的研究。高杰,博士、博士后、硕士研究生导师。2019年获长安大学公路学院道路与铁道工程专业工学博士学位,师从沙爱民教授,2017—2018年期间赴英国Liverpool John Moores University联合培养(牛顿基金资助),并获中国公路学会优秀博士论文、陕西省优秀博士论文。担任《道路工程学报(英文)》青年编委、《交通节能与环保》编委,担任23家国际期刊审稿人,累计发表学术论文50余篇,申请专利20余项。主持江西省自然科学基金项目及多项省部级课题子题和企业委托课题。研究兴趣包括:(1)沥青路面热再生关键技术;(2)环境友好型路面材料理论;(3)沥青路面智能健康监测与复杂结构病害诊断。
引用本文:
姚玉权, 仰建岗, 高杰, 何亮, 许竞. 就地热再生沥青混合料的材料组成波动及控制策略[J]. 材料导报, 2022, 36(16): 22030098-10.
YAO Yuquan, YANG Jiangang, GAO Jie, HE Liang, XU Jing. Material Composition Volatility and Control Strategy for Hot In-place Recycling Asphalt Mixture. Materials Reports, 2022, 36(16): 22030098-10.
1 Sha A, Liu Z, Jiang W, et al. Journal of Road Engineering, 2021, 1(1), 1. 2 JTTE Editorial Office, Chen J Q, Dan H C, et al. Journal of Traffic and Transportation Engineering (English Edition), 2021, 8(6), 815. 3 Cai J, Song C, Gong X, et al. Construction and Building Materials, 2022, 323, 126532. 4 Pasetto M, Baliello A, Giacomello G, et al. Journal of Traffic and Transportation Engineering (English Edition), 2021, 8(6), 1022. 5 Yang J G, Zhang W, Yao Y Q, et al. Journal of Highway and Transportation Research and Development, 2021, 38(10), 7(in Chinese). 仰建岗, 张伟, 姚玉权, 等. 公路交通科技, 2021, 38(10), 7. 6 Yao Y Q, Yang J G, Gao J, et al. Journal of Jilin University(Enginee-ring and Technology Edition), 2022, 52(3),585(in Chinese). 姚玉权, 仰建岗, 高杰, 等. 吉林大学学报(工学版), 2022, 52(3), 585. 7 Ma Y, Polaczyk P, Hu W, et al. Journal of Cleaner Production, 2021, 314, 127953. 8 Li X L, Cui Z J, Lyu X C, et al. China Journal of Highway and Transport, 2020, 33(10),254(in Chinese). 李雪连, 崔之靖, 吕新潮, 等. 中国公路学报, 2020, 33(10), 254. 9 Qi X F, Zou X L, Ruan L M, et al. Journal of China & Foreign Highway, 2018, 38(2), 248(in Chinese). 齐小飞, 邹晓翎, 阮鹿鸣, 等. 中外公路, 2018, 38(2), 248. 10 Ma Y, Polaczyk P, Park H, et al. Journal of Cleaner Production, 2020, 277, 124093. 11 Jing H, Cong Y, Zhang Y, et al. DYNA, 2020, 95(1), 553. 12 Liu Y, Wang H, Tighe S L, et al. Construction and Building Materials, 2019, 226, 288. 13 Yousefi A, Behnood A, Nowruzi A, et al. Construction and Building Materials, 2021, 268, 121200. 14 Ding F. Analysis and control of gradation variation in construction process for asphalt pavement. Master's Thesis, Southeast University, China, 2020(in Chinese). 丁凡. 沥青路面施工过程级配变异性分析与控制. 硕士学位论文, 东南大学, 2020. 15 Zhang Y. Research on influence of new asphalt mixture on hot in-place recycling performance and RAP grading fluctuation range. Master's Thesis, Chongqing Jiaotong University, China, 2020(in Chinese). 张余. 新料对就地热再生性能影响及RAP料级配波动范围研究. 硕士学位论文, 重庆交通大学, 2020. 16 Zaumanis M, Oga J, Haritonovs V. Construction and Building Materials, 2018, 188, 546. 17 Pan Y, Li J, Yang T, et al. Construction and Building Materials, 2020, 248, 118649. 18 Gao J, Yang J, Yu D, et al. Construction and Building Materials, 2021, 278, 122389. 19 Zhong H, Huang W, Yan C, et al. Construction and Building Materials, 2021, 276, 122188. 20 Li X G. Research on the key technologies of hot in-place recycling of asphalt concrete pavements. Master's Thesis, Southeast University, China, 2015(in Chinese). 李铉国. 沥青路面就地热再生工程关键技术研究. 硕士学位论文, 东南大学, 2015. 21 Sheng C, Shi S Q, Pan C Y, et al. Probability & statistics, Higher Education Press, China, 2008, pp. 53(in Chinese). 盛骤, 试式千, 潘承毅, 等. 概率论与数理统计, 高等教育出版社, 2008, pp. 53.