Please wait a minute...
材料导报  2022, Vol. 36 Issue (16): 22030098-10    https://doi.org/10.11896/cldb.22030098
  低碳生态路面材料 |
就地热再生沥青混合料的材料组成波动及控制策略
姚玉权1, 仰建岗2,3, 高杰1,2,3,*, 何亮4, 许竞2,3
1 长安大学公路学院,西安 710064
2 华东交通大学土木建筑学院,南昌 330013
3 华东交通大学道路工程研究所,南昌 330013
4 重庆交通大学交通土建材料国家地方联合实验室,重庆 400074
Material Composition Volatility and Control Strategy for Hot In-place Recycling Asphalt Mixture
YAO Yuquan1, YANG Jiangang2,3, GAO Jie1,2,3,*, HE Liang4, XU Jing2,3
1 School of Highway, Chang'an University, Xi'an 710064, China
2 School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, China
3 Institute of Road Engineering, East China Jiaotong University, Nanchang 330013, China
4 National and Local Joint Engineering Laboratory of Traffic Civil Engineering Materials, Chongqing Jiaotong University, Chongqing 400074, China
下载:  全 文 ( PDF ) ( 16662KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 就地热再生沥青混合料(Hot in-place recycling asphalt mixture, HIRAM)施工过程中材料组成波动对沥青路面施工质量、耐久性有重要影响。为控制HIRAM材料组成波动,本工作针对HIRAM材料组成设计阶段提出材料组成波动控制策略。为此,分析了HIRAM材料组成类别,构建了不同材料之间的关系模型,并从精细化控制角度提出就地热再生养护路段施工单元划分策略。此外,通过沥青混合料回收料(Reclaimed asphalt pavement, RAP)材料组成与外加热拌沥青混合料(Hot mix asphalt, HMA)比例关系模型,从控制HIRAM材料组成波动范围角度,结合Fréchet相似度与K-Means聚类理论,提出了HIRAM材料组成波动范围控制策略。在此基础上,依托江西省德昌高速大中修工程论证了控制策略的可行性。结果表明:通过HIRAM材料组成控制策略,在RAP材料组成、外加HMA比例具有显著差异的情况下可以有效地控制HIRAM材料组成波动范围,使其满足设计/规范要求。研究结果可为就地热再生施工过程中HIRAM材料组成控制提供一种新的途径,保障就地热再生施工质量。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姚玉权
仰建岗
高杰
何亮
许竞
关键词:  道路工程  就地热再生沥青混合料(HIRAM)  材料组成波动  控制策略    
Abstract: The material composition volatility of hot in-place recycling asphalt mixture (HIRAM) has an important impact on the construction quality and durability of asphalt pavement during the construction process. To control the material composition volatility of HIRAM, in this work, the material composition control strategy for the design stage of HIRAM was proposed. To this end, the HIRAM material composition categories were analyzed, the relational model between the different materials was established, and a strategy for dividing the construction unit of the hot in-place recycling maintenance section was proposed by considering the perspective of refinement control. In addition, according to the relational model between recycled asphalt pavement (RAP) material composition and the amount of hot mix asphalt (HMA), the HIRAM material composition volatility control strategy was proposed by using Fréchet similarity and K-Means clustering theory from the aspect of controlling the volatility of HIRAM material composition. Furthermore, the feasibility of the control strategy was demonstrated in the project of the Dechang Expressway in Jiangxi Pro-vince. The results show that the HIRAM material composition control strategy can effectively control the volatility to meet the design and/or specification requirements when RAP material composition and HMA ratio are significantly different. Meanwhile, the results of the study can provide a new way to control the HIRAM material composition and ensure the construction quality during the hot in-place recycling construction process.
Key words:  road engineering    hot in-place recycling asphalt mixture (HIRAM)    material composition volatility    control strategy
出版日期:  2022-08-25      发布日期:  2022-08-29
ZTFLH:  U416.2  
基金资助: 国家自然科学基金(52111530134); 江西省自然科学基金(20202BABL214046); 江西省教育厅科学技术研究项目(GJJ210623;GJJ210645); 新疆维吾尔族自治区重点研发项目(2021B01005); 重庆市自然科学基金(cstc2020jcyj-msxmX0431)
通讯作者:  *gaojie@ecjtu.edu.cn   
作者简介:  姚玉权,2016年7月、2019年6月分别于华东交通大学获得工学学士学位和硕士学位。现为长安大学公路学院博士研究生,师从郑木莲教授。目前主要从事再生沥青路面结构与材料方面的研究。高杰,博士、博士后、硕士研究生导师。2019年获长安大学公路学院道路与铁道工程专业工学博士学位,师从沙爱民教授,2017—2018年期间赴英国Liverpool John Moores University联合培养(牛顿基金资助),并获中国公路学会优秀博士论文、陕西省优秀博士论文。担任《道路工程学报(英文)》青年编委、《交通节能与环保》编委,担任23家国际期刊审稿人,累计发表学术论文50余篇,申请专利20余项。主持江西省自然科学基金项目及多项省部级课题子题和企业委托课题。研究兴趣包括:(1)沥青路面热再生关键技术;(2)环境友好型路面材料理论;(3)沥青路面智能健康监测与复杂结构病害诊断。
引用本文:    
姚玉权, 仰建岗, 高杰, 何亮, 许竞. 就地热再生沥青混合料的材料组成波动及控制策略[J]. 材料导报, 2022, 36(16): 22030098-10.
YAO Yuquan, YANG Jiangang, GAO Jie, HE Liang, XU Jing. Material Composition Volatility and Control Strategy for Hot In-place Recycling Asphalt Mixture. Materials Reports, 2022, 36(16): 22030098-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030098  或          http://www.mater-rep.com/CN/Y2022/V36/I16/22030098
1 Sha A, Liu Z, Jiang W, et al. Journal of Road Engineering, 2021, 1(1), 1.
2 JTTE Editorial Office, Chen J Q, Dan H C, et al. Journal of Traffic and Transportation Engineering (English Edition), 2021, 8(6), 815.
3 Cai J, Song C, Gong X, et al. Construction and Building Materials, 2022, 323, 126532.
4 Pasetto M, Baliello A, Giacomello G, et al. Journal of Traffic and Transportation Engineering (English Edition), 2021, 8(6), 1022.
5 Yang J G, Zhang W, Yao Y Q, et al. Journal of Highway and Transportation Research and Development, 2021, 38(10), 7(in Chinese).
仰建岗, 张伟, 姚玉权, 等. 公路交通科技, 2021, 38(10), 7.
6 Yao Y Q, Yang J G, Gao J, et al. Journal of Jilin University(Enginee-ring and Technology Edition), 2022, 52(3),585(in Chinese).
姚玉权, 仰建岗, 高杰, 等. 吉林大学学报(工学版), 2022, 52(3), 585.
7 Ma Y, Polaczyk P, Hu W, et al. Journal of Cleaner Production, 2021, 314, 127953.
8 Li X L, Cui Z J, Lyu X C, et al. China Journal of Highway and Transport, 2020, 33(10),254(in Chinese).
李雪连, 崔之靖, 吕新潮, 等. 中国公路学报, 2020, 33(10), 254.
9 Qi X F, Zou X L, Ruan L M, et al. Journal of China & Foreign Highway, 2018, 38(2), 248(in Chinese).
齐小飞, 邹晓翎, 阮鹿鸣, 等. 中外公路, 2018, 38(2), 248.
10 Ma Y, Polaczyk P, Park H, et al. Journal of Cleaner Production, 2020, 277, 124093.
11 Jing H, Cong Y, Zhang Y, et al. DYNA, 2020, 95(1), 553.
12 Liu Y, Wang H, Tighe S L, et al. Construction and Building Materials, 2019, 226, 288.
13 Yousefi A, Behnood A, Nowruzi A, et al. Construction and Building Materials, 2021, 268, 121200.
14 Ding F. Analysis and control of gradation variation in construction process for asphalt pavement. Master's Thesis, Southeast University, China, 2020(in Chinese).
丁凡. 沥青路面施工过程级配变异性分析与控制. 硕士学位论文, 东南大学, 2020.
15 Zhang Y. Research on influence of new asphalt mixture on hot in-place recycling performance and RAP grading fluctuation range. Master's Thesis, Chongqing Jiaotong University, China, 2020(in Chinese).
张余. 新料对就地热再生性能影响及RAP料级配波动范围研究. 硕士学位论文, 重庆交通大学, 2020.
16 Zaumanis M, Oga J, Haritonovs V. Construction and Building Materials, 2018, 188, 546.
17 Pan Y, Li J, Yang T, et al. Construction and Building Materials, 2020, 248, 118649.
18 Gao J, Yang J, Yu D, et al. Construction and Building Materials, 2021, 278, 122389.
19 Zhong H, Huang W, Yan C, et al. Construction and Building Materials, 2021, 276, 122188.
20 Li X G. Research on the key technologies of hot in-place recycling of asphalt concrete pavements. Master's Thesis, Southeast University, China, 2015(in Chinese).
李铉国. 沥青路面就地热再生工程关键技术研究. 硕士学位论文, 东南大学, 2015.
21 Sheng C, Shi S Q, Pan C Y, et al. Probability & statistics, Higher Education Press, China, 2008, pp. 53(in Chinese).
盛骤, 试式千, 潘承毅, 等. 概率论与数理统计, 高等教育出版社, 2008, pp. 53.
[1] 孙思威, 金鑫, 邓昌宁, 郭乃胜, 余耀威. 基于分形理论的蓄能自发光道路标线涂料性能预测模型研究[J]. 材料导报, 2022, 36(Z1): 20110256-7.
[2] 程培峰, 杨宗昊, 张展铭, 徐进. 热老化下纳米蒙脱土/SBS复合改性沥青愈合性能及微观机制分析[J]. 材料导报, 2022, 36(9): 21020100-6.
[3] 张永军, 罗文波. 重复荷载下玄武岩纤维沥青混合料的永久变形及其分数阶黏弹塑性模型[J]. 材料导报, 2022, 36(9): 21020108-7.
[4] 周雯怡, 易军艳, 陈卓, 冯德成. 泡沫沥青冷再生混合料界面黏附性提升原理与路用性能验证[J]. 材料导报, 2022, 36(16): 21110120-9.
[5] 杨彦海, 王汉彬, 杨野. 冻融循环作用下乳化沥青冷再生混合料空隙特性[J]. 材料导报, 2022, 36(16): 21110128-7.
[6] 岳红亚, 毕玉峰, 徐 润, 张常勇, 丁婷婷, 李怀峰, 刘晓威, 宋修广. 废旧轮胎在道路工程中的应用研究进展[J]. 材料导报, 2022, 36(16): 22040129-11.
[7] 姚 震, 张凌波, 梁鹏飞, 王仕峰, 颜川奇. 多种湿法橡胶改性沥青的综合性能评价与改性机理研究[J]. 材料导报, 2022, 36(16): 21120124-7.
[8] 李文博, 柳力, 刘朝晖, 刘俊豪. 促溶-表面处理二元复合作用对橡胶沥青性能的影响[J]. 材料导报, 2022, 36(11): 21010088-7.
[9] 范世平, 朱洪洲, 钟伟明. 生物重油对老化50#沥青的再生效果评价[J]. 材料导报, 2022, 36(11): 21010089-5.
[10] 杨健, 郭乃胜, 郭晓阳, 王志臣, 房辰泽, 褚召阳. 基于分子动力学的泡沫沥青-集料界面黏附性研究[J]. 材料导报, 2021, 35(z2): 138-144.
[11] 戴文亭, 刘丹丹, 郭威, 李颖松, 安胤. 冻融循环条件下硅烷偶联剂改性泡沫沥青混合料的损伤特性[J]. 材料导报, 2021, 35(Z1): 264-268.
[12] 凌天清, 崔立龙, 张意, 田波, 李定珠. 考虑沥青层表面细观构造的探地雷达空隙率检测研究[J]. 材料导报, 2021, 35(24): 24081-24087.
[13] 王晓锋, 梁波, 陈玉凡, 张宽宽. 电位滴定法在沥青研究中的应用及展望[J]. 材料导报, 2021, 35(23): 23076-23088.
[14] 范世平, 朱洪洲. 细粒式沥青混合料断裂愈合预估模型[J]. 材料导报, 2021, 35(18): 18090-18095.
[15] 柴金玲, 栗威. 基于GTM的沥青混合料配合比设计方法试验研究[J]. 材料导报, 2020, 34(Z2): 283-287.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed