Please wait a minute...
材料导报  2022, Vol. 36 Issue (16): 22040412-7    https://doi.org/10.11896/cldb.22040412
  低碳生态路面材料 |
高粘SBS改性乳化沥青就地冷再生混合料抗裂性能评价
虞将苗, 马远跃, 张园*, 于华洋, 邹桂莲
华南理工大学土木与交通学院,广州 510640
Evaluation of Crack Resistance for High Viscosity SBS Modified Emulsified Asphalt Cold In-place Recycling Mixture
YU Jiangmiao, MA Yuanyue, ZHANG Yuan*, YU Huayang, ZOU Guilian
School of Civil Engineering and Transportation,South China University of Technology,Guangzhou 510640,China
下载:  全 文 ( PDF ) ( 10587KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 乳化沥青就地冷再生技术是显著地降低道路维养过程中的碳排放的理想技术方案。针对就地冷再生的技术需求及痛点,本工作实现了再生沥青混合料(RAP)的100%利用,以最佳油膜厚度来控制乳化沥青用量。同时,针对冷再生路面常见的疲劳开裂与低温开裂病害,选取了低温弯曲试验、冲击韧性试验、半圆弯曲试验、四点弯曲疲劳试验,测试分析对比高粘SBS改性乳化沥青与常规SBS改性乳化沥青两种胶结料的冷再生混合料的抗裂性能。各试验结果相符,与常规SBS改性乳化沥青相比,高粘SBS改性乳化沥青冷再生混合料表现出更好的韧性和抵抗开裂的能力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
虞将苗
马远跃
张园
于华洋
邹桂莲
关键词:  改性乳化沥青  就地冷再生  冷再生混合料  抗裂性能    
Abstract: Cold in-place recycling technology of emulsified asphalt is an ideal technical scheme to significantly reduce carbon emission in the process of road maintenance. According to the technical requirements and challeges of in-situ cold regeneration, this work realizes the 100% utilization of RAP and controls the amount of the emulsified asphalt with the best oil film thickness. Aiming at the common fatigue cracking and low-temperature cracking diseases of cold recycled pavement, low-temperature bending test, impact toughness test, semicircular bending test and four-point bending fatigue test were selected to test, analyze and compare the crack resistance of cold recycled mixture of the high viscosity SBS modified emulsified asphalt and the conventional SBS modified emulsified asphalt. The performance of each test result is consistent. In contrast to the conventional SBS modified emulsified asphalt, the cold recycled mixture of the high viscosity SBS modified emulsified asphalt shows better toughness and cracking resistance.
Key words:  modified emulsified asphalt    cold in-place recycling    cold recycled mixture    crack resistance
出版日期:  2022-08-25      发布日期:  2022-08-29
ZTFLH:  U414  
基金资助: 国家自然科学基金(52178426)
通讯作者:  *yuanzhang@scut.edu.cn   
作者简介:  虞将苗,2000年7月获华南理工大学交通土建工程专业/管理工程专业双学士学位,2005年6月获得华南理工大学结构工程(道路)博士学位,现任华南理工大学土木与交通学院教授、博士研究生导师、道路工程系主任,美国加州大学伯克利分校(UC Berkeley)路面研究中心国家公派访问学者。主要研究方向为高性能沥青与沥青混合料、新型路面结构与材料、现代道路养护与管理技术等。发表学术论文50余篇,申请并授权国家发明和实用新型专利60余项。张园,华南理工大学道路工程系教授、博士研究生导师。2007年获武汉理工大学建筑与材料工程学士学位,2010年获得武汉理工大学材料科学与工程硕士学位,2015年获得荷兰代尔夫特理工大学道路与铁道工程专业博士学位。主要研究方向为功能型沥青路面结构与材料、绿色道路建筑材料及铺装技术、沥青材料性能表征及数值模拟。已发表英文学术论文50余篇。
引用本文:    
虞将苗, 马远跃, 张园, 于华洋, 邹桂莲. 高粘SBS改性乳化沥青就地冷再生混合料抗裂性能评价[J]. 材料导报, 2022, 36(16): 22040412-7.
YU Jiangmiao, MA Yuanyue, ZHANG Yuan, YU Huayang, ZOU Guilian. Evaluation of Crack Resistance for High Viscosity SBS Modified Emulsified Asphalt Cold In-place Recycling Mixture. Materials Reports, 2022, 36(16): 22040412-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040412  或          http://www.mater-rep.com/CN/Y2022/V36/I16/22040412
1 Hao P W, Li W J, Han Y Y, et al. Materials Reports, 2021,35(S2),150(in Chinese).
郝培文,李万军,韩钰祥,等.材料导报,2021,35(S2),150.
2 Lin J, Huo L, Xu F, et al. Construction and Building Materials, 2018, 189,924.
3 Filho W U, Klinsky L, Motta R, et al. Advances in Materials Science and Engineering, 2020,2020,1.
4 Raschia S, Mignini C, Graziani A, et al. Road Materials and Pavement Design, 2019, 20(1),1.
5 Oliver J. Road and Transport Research, 2011, 20(3),3.
6 Piratheepan M. Designing cold mix asphalt (CMA) and cold-in-place recycling (CIR) using superpave gyratory compactor. Ph.D. Thesis, University of Nevada, Reno, USA,2011.
7 Orosa P, Pasandín A R, Pérez I. Construction and Building Materials, 2021,296,123620.
8 Behnood A, Modiri G M, Gozali A F, et al. Construction and Building Materials, 2015,96,172.
9 Daneshvar D, Motamed A, Imaninasab R. Road Materials and Pavement Design, 2022, 23(3),527.
10 Krpalek O, Valentin J. Applied Mechanics and Materials, 2015,802,303.
11 Teshale E Z, Rettner D, Hartleib A, et al. Road Materials and Pavement Design, 2017,86,103.
12 Yu J M, Yang N K, Yu H Y. Journal of Central South University(Science and Technology), 2021, 52(7),2287(in Chinese).
虞将苗,杨倪坤,于华洋.中南大学学报(自然科学版),2021,52(7),2287.
13 Zhang D, He L, Hou S G, et al. Journal of Highway and Transportation Research and Development, 2017,34(12),1(in Chinese).
张东,何亮,侯曙光,等.公路交通科技,2017,34(12),1.
14 Dondi G, Tataranni P, Pettinari M, et al. Construction and Building Materials,2014,68,370.
15 Dong Z J, Tan Y Q, Cao L P. Journal of Highway and Transportation Research and Development,2006,23(2),43(in Chinese).
董泽蛟,谭忆秋,曹丽萍.公路交通科技,2006,23(2),43.
16 Zhu T Y, Cheng Q Y, Xu B, et al. Journal of Highway and Transportation Research and Development, 2018,35(12),35(in Chinese).
祝谭雍,程其瑜,许兵,等.公路交通科技,2018,35(12),35.
17 Wang W M, Wu K H. Highway,2022,67(1),58(in Chinese).
王伟明,吴旷怀.公路,2022,67(1),58.
18 Zou G L, Zhang X N, Wang S H. Highway,2004,49(10),119(in Chinese).
邹桂莲,张肖宁,王绍怀.公路,2004,49(10),119.
19 Yu H, Yu J, Yang N, et al. Buildings,2021,12(11),619.
20 Zhang X N, Zou G L, He Z Y. Journal of South China University of Technology(Natural Science Edition),2001,45(7),88(in Chinese).
张肖宁,邹桂莲,贺志勇.华南理工大学学报(自然科学版),2001,45(7),88.
21 Zhang S X, Zhang X N, Xu W, et al. Journal of Vibration and Shock, 2013,32(23),1(in Chinese).
张顺先,张肖宁,徐伟,等.振动与冲击,2013,32(23),1.
22 Sabouri M, Wegman D E. Road Materials and Pavement Design, DOI:10.1080/14680629.2022.2060123.
23 Elseifi M A, Mohammad L N, Ying H, et al. Road Materials and Pavement Design,2012,81,277.
24 Charmot S, Dong W, Xu X. In: Transportation Research Board 96th Annual Meeting. Washington DC,2017.
25 Tebaldi G, Dave E V, Marsac P, et al. Road Materials & Pavement Design, 2014, 15(2),272.
26 Wang D C, Hao P W, Li R X, et al. Journal of Wuhan University of Technology(Transportation Science & Engineering),2020,44(1),64(in Chinese).
汪德才,郝培文,李瑞霞,等.武汉理工大学学报(交通科学与工程版),2020,44(1),64.
27 Wang W M, Wu K H. Highway, 2016,61(11),63(in Chinese).
王伟明,吴旷怀.公路,2016,61(11),63.
28 Zou G L, Wu X Q, Li Y Y, et al. Journal of Henan University of Science and Technology( Natural Science) ,2022,43(1),64(in Chinese).
邹桂莲, 吴晓强, 李英勇,等.河南科技大学学报(自然科学版),2022,43(1),64.
29 Wan C, Zhang X N, Yu J M. Journal of South China University of Technology(Natural Science Edition), 2009,37(7),52(in Chinese).
万成,张肖宁,虞将苗.华南理工大学学报(自然科学版),2009,37(7),52.
30 Wang Z, He L, Zhang J, et al. Highway,2010,55(12),160(in Chinese).
王真,何亮,张捷,等.公路,2010,55(12),160.
31 Lyu S T, Liu C C, Qu F T, et al. China Journal of Highway and Transport, 2020,33(10),67(in Chinese).
吕松涛,刘超超,屈芳婷,等.中国公路学报,2020,33(10),67.
32 Yu J M, Yang J P, Shu L H, et al. Highway, 2019,64(1),246(in Chinese).
虞将苗,阳经培,舒立恒,等.公路,2019,64(1),246.
[1] 周雯怡, 易军艳, 陈卓, 冯德成. 泡沫沥青冷再生混合料界面黏附性提升原理与路用性能验证[J]. 材料导报, 2022, 36(16): 21110120-9.
[2] 杨彦海, 王汉彬, 杨野. 冻融循环作用下乳化沥青冷再生混合料空隙特性[J]. 材料导报, 2022, 36(16): 21110128-7.
[3] 刘芳, 王旗, 张翛, 彭义军, 刘晓东. 老化对废机油再生沥青流变特性的影响及机理[J]. 材料导报, 2022, 36(16): 22040405-6.
[4] 赵晓雯, 张检梅, 陈徐东, 季韬. 生石灰-碳酸钠掺量和矿渣活性对碱矿渣砂浆抗裂性能的影响[J]. 材料导报, 2022, 36(16): 21030241-5.
[5] 杨医博, 岳晓东, 姚丁语, 张迪, 郭文瑛, 王恒昌. 碱渣内养护剂对高强高性能混凝土自收缩及早期抗裂性能的影响及机理分析[J]. 材料导报, 2022, 36(12): 20020019-6.
[6] 陈飞, 张林艳, 封基良, 马永, 赵雁斌. 沥青混合料低温抗裂性能试验方法研究进展[J]. 材料导报, 2021, 35(z2): 127-137.
[7] 郝培文, 李万军, 韩钰祥, 苏纪壮, 乐宸. 基于OT试验的乳化沥青冷再生面层混合料抗反射裂缝性能研究[J]. 材料导报, 2021, 35(z2): 150-157.
[8] 朱月风, 司春棣, 乔亚宁, 李彦伟. 沥青标号和用量对再生沥青混合料性能的影响[J]. 材料导报, 2021, 35(6): 6086-6092.
[9] 李款, 解建光, 潘友强, 张辉. 基于活性增韧剂改善冷拌环氧混合料路用性能[J]. 材料导报, 2021, 35(22): 22200-22205.
[10] 吴昊宇, 吴培红, 卞立波, 陶志. 纤维珠链在混凝土抗裂性能设计中的应用研究[J]. 材料导报, 2020, 34(Z1): 193-198.
[11] 杜华川, 王延宁, 何苗苗, 林梓锋, 吕正宗. 有机缓凝剂对水泥改性乳化沥青胶浆的改善效果研究[J]. 材料导报, 2019, 33(Z2): 254-260.
[12] 吕政桦, 申爱琴, 李悦, 郭寅川, 喻沐阳. 基于遗传优化的乳化沥青冷再生混合料的疲劳性能及机理研究[J]. 材料导报, 2019, 33(16): 2704-2709.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed