Please wait a minute...
材料导报  2022, Vol. 36 Issue (16): 22040097-9    https://doi.org/10.11896/cldb.22040097
  低碳生态路面材料 |
沥青胶浆-集料界面水盐侵蚀损伤规律研究
张吉哲1,*, 王静1, 李岩2, 唐小丹2, 许成虎2, 王业飞3, 苏纪壮3, 张国扬4, 何亮5
1 山东大学齐鲁交通学院,济南 250100
2 山东高速建设管理集团有限公司,济南 250000
3 山东高速工程检测有限公司,济南 250100
4 山东高速路用新材料技术有限公司,济南 250002
5 重庆交通大学土木工程学院,重庆 400074
Study on Water and Salt Erosion Damage of Asphalt Mortar-Aggregate Interface
ZHANG Jizhe1,*, WANG Jing1, LI Yan2, TANG Xiaodan2, XU Chenghu2, WANG Yefei3, SU Jizhuang3, ZHANG Guoyang4, HE Liang5
1 School of Qilu Transportation, Shandong University, Jinan 250100, China
2 Shandong Hi-Speed Construction Management Group Co.,Ltd., Jinan 250000, China
3 Shandong Hi-Speed Engineering Test Co., Ltd., Jinan 250100, China
4 Shandong Hi-Speed with New Material Technology Co., Ltd., Jinan 250002, China
5 School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China
下载:  全 文 ( PDF ) ( 33756KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 沥青路面的水盐侵蚀是导致其性能劣化、服役寿命缩短的主要原因之一,为研究沥青混合料的水盐侵蚀损伤规律,本工作以沥青胶浆、沥青胶浆-集料界面为研究对象,研究了填料的物理化学特性对沥青胶浆流变性能与渗透性的影响,分析了沥青胶浆-集料界面在不同侵蚀工况(静态浸水、压力浸水)下界面强度的衰减规律。结果表明:填料类型对沥青胶浆的复数模量影响不大,但是其孔隙状态与比表面积对沥青胶浆的相位角与渗透性影响显著。相比于普通浸水,盐溶液侵蚀对沥青胶浆-集料界面强度衰减有显著促进作用,而其衰减速率受集料和填料的物理(孔隙体积、比表面积、微观形貌)、化学(矿物组成、化学成分)特性的综合影响。水压力的作用会加速沥青胶浆-集料界面强度的衰减,表明行车荷载产生的动水压力会推动沥青路面的水损害进程。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张吉哲
王静
李岩
唐小丹
许成虎
王业飞
苏纪壮
张国扬
何亮
关键词:  沥青胶浆  渗透性  界面强度  水盐侵蚀  水损害    
Abstract: The water and salt erosion of asphalt pavement is one of the main reasons for its performance deterioration and service life attenuation. In order to study the erosion damage law of water and salt in asphalt mixture, taking asphalt mortar and asphalt mortar-aggregate interface as the research objects, this work studied the influence of the physical and chemical properties of filler on the rheological properties and permeability of asphalt mortar and analyzed the attenuation law of interface strength of asphalt mortar-aggregate under different erosion conditions (static immersion and pressure immersion). It is found that the type of filler has little effect on the complex modulus of asphalt mortar, but its pore state and specific surface area have significant effects on the phase angle and permeability of asphalt mortar. Compared with ordinary immersion, salt solution erosion can significantly promote the strength attenuation of asphalt mortar-aggregate interface, and its attenuation rate is comprehensively affected by the physical (pore volume, specific surface area, micro morphology) and chemical (mineral composition, chemical composition) cha-racteristics of aggregate and filler. The effect of water pressure will accelerate the attenuation of asphalt mortar-aggregate interface strength, indicating that the dynamic water pressure generated by driving load will promote the water damage process of asphalt pavement.
Key words:  asphalt mortar    permeability    interfacial strength    water and salt erosion    moisture damage
出版日期:  2022-08-25      发布日期:  2022-08-29
ZTFLH:  U414  
基金资助: 国家自然科学基金(51908331)
通讯作者:  *jizhe.zhang@sdu.edu.cn   
作者简介:  张吉哲,2016年7月毕业于英国诺丁汉大学,获得博士学位。现任山东大学齐鲁交通学院副研究员、硕士研究生导师。目前主要从事沥青混合料细观力学、新型路面材料、废旧路面材料再生利用等方面的研究工作。主持国家自然科学基金1项,发表学术论文30余篇,其中以第一作者或通讯作者在沥青及沥青混合料方面发表SCI论文20余篇,授权发明专利10余项。
引用本文:    
张吉哲, 王静, 李岩, 唐小丹, 许成虎, 王业飞, 苏纪壮, 张国扬, 何亮. 沥青胶浆-集料界面水盐侵蚀损伤规律研究[J]. 材料导报, 2022, 36(16): 22040097-9.
ZHANG Jizhe, WANG Jing, LI Yan, TANG Xiaodan, XU Chenghu, WANG Yefei, SU Jizhuang, ZHANG Guoyang, HE Liang. Study on Water and Salt Erosion Damage of Asphalt Mortar-Aggregate Interface. Materials Reports, 2022, 36(16): 22040097-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040097  或          http://www.mater-rep.com/CN/Y2022/V36/I16/22040097
1 Li P, Lu J, Zhang Z Q, et al. Chinese Journal of Highway and Transport, 2008 (4), 6(in Chinese).
李平, 芦军, 张争奇, 等. 中国公路学报, 2008(4), 6.
2 Lyu D, Zheng C F. Construction and Building Materials, 2014, 65, 330.
3 Cheng Y C, Ma H L, Zhang P,et al. Journal of Jilin University (Engineering Edition), 2014, 44(6), 1628(in Chinese).
程永春, 马慧莉, 张鹏, 等. 吉林大学学报(工学版), 2014, 44(6), 1628.
4 Barra B, Momm L, Guerrero Y, et al. Anais da Academia Brasileira de Ciências, 2014, 86(2), 995.
5 Geber R, Simon A, Kocserha I, et al. Journal of Physics: Conference Series, 2017, 790(1), 012009.
6 Wang L, Wang L Q, Jia Y J, et al. Journal of Composite Materials, 2017, 34 (9), 2070(in Chinese).
王岚, 王利强, 贾永杰, 等. 复合材料学报, 2017, 34(9), 2070.
7 Yuan J, Dong W J, Qian W B, et al. Science Technology and Enginee-ring, 2013, 13(5), 1388(in Chinese).
袁峻, 董文姣, 钱武彬, 等. 科学技术与工程, 2013, 13(5), 1388.
8 Xu G, Wang H. Science Technology and Engineering,2016,112(10),161.
9 郑传峰, 赵大军, 王磊, 等. 中国专利, CN102830062B, 2014.
10 Li Y, Wang Q Z, Zheng C F. Highway,2022,67(1),32(in Chinese).
李杨, 王琦智, 郑传峰. 公路, 2022, 67(1), 32.
11 Wang D Y, Guo X L, Tang C. Journal of Building Materials, 2021, 24 (3), 624(in Chinese).
王端宜, 郭秀林, 唐成. 建筑材料学报, 2021, 24(3), 624.
12 Xiong R, Guan B W, Sheng Y P. Journal of Wuhan University of Technology, 2014, 36(10), 45(in Chinese).
熊锐, 关博文, 盛燕萍. 武汉理工大学学报, 2014, 36(10), 45.
13 Xiong R, Chen S F, Guan B W, et al. Journal of Wuhan University of Technology, 2014, 36(3), 47(in Chinese).
熊锐, 陈拴发, 关博文, 等. 武汉理工大学学报, 2014, 36(3), 47.
14 Liu Z Z, Chen S F, He R, et al. Journal of Materials in Civil Enginee-ring, 2014, 27(6), 04014180.
15 Zhou Z G, Li H J, Liu X, et al. Journal of Building Materials, 2020, 23(6), 1430(in Chinese).
周志刚, 李浩嘉, 刘鑫, 等. 建筑材料学报, 2020, 23(6), 1430.
16 Feng D C, Yi J Y, Wang D S, et al. Cold Regions Science and Technology, 2010, 62, 34.
17 Antunes V, Freire A C, Quaresma L,et al. Construction and Building Materials, 2015, 76, 322.
18 Antunes V, Freire A C,Quaresma L,et al. Construction and Building Materials, 2016, 104, 85.
19 Apeagyei A K, Grenfell J R A, Airey G D. Journal of Materials in Civil Engineering, 2014, 26(8), 04014045.
20 Cheng Z Q, Zhang X Y, Kong F S. Journal of Building Materials, 2021, 24(2), 399(in Chinese).
成志强, 张晓燕, 孔繁盛. 建筑材料学报, 2021, 24(2), 399.
21 Gao Y, Zou X L, Zhang T T. Journal of China and Foreign Highway, 2018, 38(4), 59(in Chinese).
高阳, 邹晓翎, 张童童. 中外公路, 2018, 38(4), 59.
22 Xiao Z F. Research on moisture susceptibility of asphalt concrete containing steel slag powder as filler.Master's Thesis, Wuhan University of Technology, China, 2020(in Chinese).
肖志峰. 钢渣粉沥青混凝土水稳定性能研究.硕士学位论文, 武汉理工大学, 2020.
23 Lei J A, Zheng N X, Xu X Q, et al. Journal of Building Materials, 2020,23 (4), 904(in Chinese).
雷俊安,郑南翔,许新权, 等. 建筑材料学报, 2020, 23(4), 904.
24 Xu X Q, Tang S G, Yang J. Journal of Chang'an University (Natural Science Edition), 2020, 40(4), 14(in Chinese).
许新权, 唐胜刚, 杨军. 长安大学学报(自然科学版),2020,40(4),14.
25 Shao X Z, Tan Y Q, Shao M H, et al. Highway, 2003(12), 105(in Chinese).
邵显智, 谭忆秋, 邵敏华, 等. 公路, 2003(12), 105.
26 Apeagyei A K, Grenfell J R A, Airey G D. Materials and Structures, 2015, 48, 1461.
[1] 于琦, 万小梅, 赵铁军, 王腾, 韩笑, 孙忠涛. 碱激发矿渣混凝土抗氯离子渗透性及电测试验方法研究[J]. 材料导报, 2022, 36(5): 20120067-6.
[2] 姚秉辰, 纪小平, 汤振农, 胡永林, 司柏通. 沥青路面界面聚合微胶囊的制备和性能[J]. 材料导报, 2022, 36(13): 21020130-6.
[3] ZEZE Armande Loraine Phalé, 徐红岩, 张默, 马国伟. 环氧树脂-地聚物复合涂层材料耐海水腐蚀性研究[J]. 材料导报, 2021, 35(Z1): 600-606.
[4] 刘娟红, 马虹波, 段品佳, 周昱程, 郭子栋. 硫酸盐干湿循环环境下超深井井壁混凝土抗腐蚀性能[J]. 材料导报, 2021, 35(12): 12081-12086.
[5] 石加顺, 钱如胜, 张云升, 陈逸东, 钱佳佳, 刘志勇. 水泥基材料气体渗透性测试方法及与耐久性关系的研究进展[J]. 材料导报, 2021, 35(1): 1121-1130.
[6] 成志强, 张晓燕, 孔繁盛, 郭鹏. 利用表面能理论及拉脱试验分析沥青膜的剥离行为[J]. 材料导报, 2020, 34(Z2): 288-294.
[7] 陈运灿, 闫二虎, 狄翀博, 王金华, 黄浩然, 王豪, 刘威, 徐芬, 孙立贤. 5B族(Nb,V和Ta)合金渗氢膜的研究进展[J]. 材料导报, 2020, 34(21): 21001-21011.
[8] 温彦凯, 郭乃胜, 王淋, 顾威, 尤占平. 泡沫温拌沥青胶浆的流变特性及微观机制分析[J]. 材料导报, 2020, 34(10): 10052-10060.
[9] 杜华川, 王延宁, 何苗苗, 林梓锋, 吕正宗. 有机缓凝剂对水泥改性乳化沥青胶浆的改善效果研究[J]. 材料导报, 2019, 33(Z2): 254-260.
[10] 李微, 韩森, 黄啟波, 姚腾飞, 徐鸥明. 细粒式薄表层沥青混合料中粗集料的骨架特性[J]. 材料导报, 2019, 33(4): 617-624.
[11] 张宏, 刘新, 乔志. 沥青胶浆粘度及流变特性的影响因素研究[J]. 材料导报, 2019, 33(14): 2381-2385.
[12] 刘子铭,陈华鑫,熊锐,王泳丹,王小雯. 复掺钢丝绒纤维/水镁石纤维沥青胶浆性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 295-300.
[13] 鲁云华, 郝继璨, 李琳, 宋晶, 肖国勇, 胡知之, 王同华. 自具微孔聚合物PIM-1基热致刚性膜材料的制备及气体分离性能[J]. 材料导报, 2018, 32(16): 2876-2881.
[14] 熊锐, 杨晓凯, 杨发, 刘子铭, 王小雯, 陈华鑫. 活化煤矸石改性沥青胶浆粉胶比确定及粘温特性研究*[J]. 《材料导报》期刊社, 2017, 31(2): 121-125.
[15] 莫宗云, 高小建. 偏高岭土改性混凝土的耐久性研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 115-119.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed