Please wait a minute...
材料导报  2021, Vol. 35 Issue (12): 12081-12086    https://doi.org/10.11896/cldb.20050103
  无机非金属及其复合材料 |
硫酸盐干湿循环环境下超深井井壁混凝土抗腐蚀性能
刘娟红1,2,3, 马虹波1, 段品佳4, 周昱程1, 郭子栋1
1 北京科技大学土木与资源工程学院,北京 100083
2 北京科技大学城市地下空间工程北京市重点实验室,北京 100083
3 北京科技大学,金属矿山高效开采与安全教育部重点实验室,北京 100083
4 中海石油气电集团有限责任公司, 北京 100028
Corrosion Resistance of Shaft Wall Concrete in Ultra-deep Wells Under Sulphate Wet and Dry Cycling Environment
LIU Juanhong1,2,3, MA Hongbo1, DUAN Pinjia4, ZHOU Yucheng1, GUO Zidong1
1 College of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083,China
2 Beijing Key Laboratory of Urban Underground Space Engineering, University of Science and Technology Beijing, Beijing 100083,China
3 State Key Laboratory of High-efficient Mining and Safety of Metal Mines, Ministry of Education, University of Science and Technology Beijing, Beijing 100083,China
4 China National Offshore Oil and Gas Group Co., Ltd., Beijing 100028,China
下载:  全 文 ( PDF ) ( 4158KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对矿山超深井井壁混凝土受地下水硫酸盐腐蚀危害等问题,本研究采用硫酸钡沉淀法、NEL-PDU型氯离子扩散系数测定仪、扫描电镜(SEM)仪、X射线衍射(XRD)仪等手段,对比了硫酸盐干湿循环快速腐蚀环境下,C70仿钢纤维混凝土(C70-ISFRC)与高性能超深井井壁混凝土(HUC)的参数指标。实验结果表明:硫酸盐干湿循环快速腐蚀后,通过质量变化发现C70-ISFRC的孔隙数量、孔隙尺寸都高于HUC,并且两种混凝土力学性能的变化趋势均为先上升后下降,但HUC在此腐蚀环境下的力学性能表现更优;在硫酸盐干湿循环下,C70-ISFRC基于电通量的渗透性评价为低,HUC基于电通量的渗透性评价为非常低。在240次硫酸盐干湿循环后,HUC表面以下10~15 mm和15~20 mm处几乎不存在液相硫酸根离子;与C70-ISFRC相比,HUC在硫酸盐干湿循环的环境下不易生成钙矾石且其内部不易形成硫酸钠晶体,不易发生开裂和晶体损伤等劣化,是一种有效的深地井壁混凝土材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘娟红
马虹波
段品佳
周昱程
郭子栋
关键词:  井壁混凝土  硫酸盐腐蚀  渗透性  离子扩散    
Abstract: To solve the problem of mine ultra-deep shaft lining concrete damaged by the sulfate corrosion of groundwater,the BaSO4 precipitation, determination of chloride ion diffusion coefficient, scanning electron microscopy (SEM) image analysis, X-ray diffraction (XRD) analysis were adopted in this study. The parameters of C70 imitation steel fiber reinforced concrete (C70-ISFRC) and high performance ultra-deep shaft lining concrete (HUC) in the environment of sulfate wet-dry cycle were compared.The results show that the number and size of pores of C70-ISFRC are higher than HUC through mass change. The changing trend of mechanical properties increases first and then decreases, but the mechanical properties of HUC are better. Under the sulfate dry-wet cycle, the permeability evaluation of C70-ISFRC is low based on electric flux, and that of HUC is extremely low. After 240 sulfate dry-wet cycles, there was little liquid phase sulfate ion at 10—15 mm and 15—20 mm below the HUC surface. Compared with C70-ISFRC, HUC is not easy to form ettringite and sodium sulfate crystals in the sulfate dry-wet cycle environment, and it is not easy to deteriorate such as cracking and crystal damage. Therefore, HUC is an effective concrete material for deep well environment.
Key words:  shaft wall concrete    sulfate attack    permeability    ion diffusion
               出版日期:  2021-06-25      发布日期:  2021-07-01
ZTFLH:  TU528  
基金资助: 国家重点研发计划(2016YFC0600803);中央高校基本科研业务费(FRF-BD-20-01A; FRF-BD-20-01B)
通讯作者:  juanhong1966@ hotmail.com   
作者简介:  刘娟红,北京科技大学土木与资源工程学院教授,博士研究生导师。长期从事现代混凝土技术教学与研究工作。主持国家自然科学重点基金、面上基金、国家重点基础研究发展计划、省部级科技计划项目和横向科研课题等60余项。获省部级科技进步一等奖2项、二等奖1项、三等奖4项。获国家发明专利20余项。在公开刊物上发表文章160余篇,被SCI、EI收录60余篇。出版学术专著《绿色高性能混凝土技术与工程应用》《活性粉末混凝土》《固体废弃物与低碳混凝土》等。主编教材《土木工程材料》。主要科研成果应用于北京市奥运工程地铁工程混凝土裂缝控制;广东省、浙江省道路桥梁工程;新疆、宁夏等自治区重点工程;大唐国际发电有限公司粉煤灰品质提升等方面。
马虹波,北京科技大学土木与资源工程学院硕士研究生。目前的主要研究领域是绿色高性能混凝土。
引用本文:    
刘娟红, 马虹波, 段品佳, 周昱程, 郭子栋. 硫酸盐干湿循环环境下超深井井壁混凝土抗腐蚀性能[J]. 材料导报, 2021, 35(12): 12081-12086.
LIU Juanhong, MA Hongbo, DUAN Pinjia, ZHOU Yucheng, GUO Zidong. Corrosion Resistance of Shaft Wall Concrete in Ultra-deep Wells Under Sulphate Wet and Dry Cycling Environment. Materials Reports, 2021, 35(12): 12081-12086.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20050103  或          http://www.mater-rep.com/CN/Y2021/V35/I12/12081
1 He M C, Xie H P, Peng S P, et al. Chinese Journal of Rock Mechanics and Engineering, 2005(16),2803 (in Chinese).
何满潮, 谢和平, 彭苏萍, 等.岩石力学与工程学报,2005(16),2803.
2 Xie H P. Advanced Engineering Sciences, 2017, 49(2),1(in Chinese).
谢和平.工程科学与技术, 2017, 49(2),1.
3 Li T,Sun Z M,Ding K L.China Concrete and Cement Products, 2019(1),1(in Chinese).
李涛,孙忠民,丁凯伦.混凝土与水泥制品,2019(1),1.
4 Michael Steiger, Sönke Asmussen.Geochimica et Cosmochimica Acta, 2008, 72(17),4291.
5 Pan Feng, Edward J, Garboczi, et al.Construction and Building Mate-rials, 2015, 96,391.
6 Bonakdar A,Mobasher B. Construction and Building Materials, 2009, 24(1),61.
7 Gao R D, Zhao S B, Li Q B, et al.China Civil Engineering Journal, 2010, 43 (2) , 48(in Chinese).
高润东, 赵顺波, 李庆斌, 等.土木工程学报, 2010, 43(2),48.
8 Wang H L,Dong Y S,Sun X Y, et al.Journal of Zhejiang University (Engineering Science Edition), 2012, 46(7),1255(in Chinese).
王海龙,董宜森,孙晓燕, 等.浙江大学学报(工学版), 2012, 46(7),1255.
9 Andrés E, Carlos M, Ignacio C. Cement and Concrete Composites, 2010, 33(3),411.
10 Thidar A, Chiaki T O. Construction and Building Materials, 2011, 25(6),2988.
11 Yu H F, Sun W, Zhang Y S, et al.Journal of the Chinese Ceramic Society, 2008(S1),128(in Chinese).
余红发, 孙伟, 张云升, 等.硅酸盐学报, 2008(S1) ,128.
12 Li S W, Wang Y F, Wang S N.Journal of Wuhan University of Technology, 2010, 32(14),35(in Chinese).
李士伟, 王迎飞, 王胜年.武汉理工大学学报, 2010, 32(14),35.
13 Zuo X B, Sun W. Journal of the Chinese Ceramic Society, 2009, 37(7),1063(in Chinese).
左晓宝, 孙伟.硅酸盐学报, 2009, 37(7),1063.
14 Zhao L, Liu J H, Zhou W J, et al.Journal of China Coal Society, 2016, 41(6),1422(in Chinese).
赵力, 刘娟红, 周卫金, 等.煤炭学报, 2016, 41(6),1422.
15 Liu J H, Zhao L, Ji H G. Chinese Journal of Engineering, 2017, 39 (8),1278(in Chinese).
刘娟红, 赵力, 纪洪广.工程科学学报, 2017, 39(8),1278.
16 Zhang Z Y, Jin X G, Luo W.Cement and Concrete Research, 2019, 116,217.
17 Jia J Q, Meng G, Zhu W Q.Journal of Building Structures, 2014, 35(9), 1(inChinese).
贾金青, 孟刚, 朱伟庆.建筑结构学报, 2014, 35(9), 1.
18 Xu H B, Deng Z C, Chen C S, et al.China Civil Engineering Journal, 2014, 47(12), 91(inChinese).
徐海宾, 邓宗才, 陈春生, 等.土木工程学报,2014, 47(12), 91.
19 Hu C H, Gao Y E, Ding W C.Journal of Building Structures, 2013, 34(12), 128(in Chinese).
胡春红, 高艳娥, 丁万聪.建筑结构学报, 2013, 34(12), 128.
20 Yao D L, Jia J Q, Wu F, et al.Construction and Building Materials, 2014, 52, 194.
21 Tian H. Study on mechanism of sulfate transport-degradation of concrete under long-term immersion. Master's Thesis, Shenzhen University, China, 2015(in Chinese ).
田浩. 长期浸泡下混凝土硫酸盐传输-劣化机理研究. 硕士学位论文,深圳大学,2015.
[1] 石加顺, 钱如胜, 张云升, 陈逸东, 钱佳佳, 刘志勇. 水泥基材料气体渗透性测试方法及与耐久性关系的研究进展[J]. 材料导报, 2021, 35(1): 1121-1130.
[2] 陈运灿, 闫二虎, 狄翀博, 王金华, 黄浩然, 王豪, 刘威, 徐芬, 孙立贤. 5B族(Nb,V和Ta)合金渗氢膜的研究进展[J]. 材料导报, 2020, 34(21): 21001-21011.
[3] 王家滨, 王斌, 张凯峰, 李恒. 盐冻损伤喷射混凝土衬砌结构氯离子扩散及其模型[J]. 材料导报, 2020, 34(16): 16055-16061.
[4] 马晓波, 王进卿, 池作和, 张光学, 詹明秀. h-BN基复合陶瓷涂层防锅炉受热面的硫酸盐腐蚀性能[J]. 材料导报, 2019, 33(6): 960-964.
[5] 王家滨, 牛荻涛. 喷射混凝土的硝酸侵蚀:孔溶液H+与NO3-的扩散规律及侵蚀机理[J]. 材料导报, 2019, 33(6): 991-999.
[6] 田柳文, 于华, 章文峰, 陈涛, 黄跃龙, 郑先峰. 锂离子电池的明星材料磷酸铁锂:基本性能、优化改性及未来展望[J]. 材料导报, 2019, 33(21): 3561-3579.
[7] 王家滨, 牛荻涛. 盐湖卤水侵蚀喷射混凝土衬砌损伤演化[J]. 材料导报, 2019, 33(20): 3426-3435.
[8] 吴彰钰, 余红发, 麻海燕, 冯滔滔, 达波. 基于可靠度的海洋浪溅区大掺量矿渣混凝土结构服役寿命预测[J]. 材料导报, 2019, 33(2): 264-270.
[9] 鲁云华, 郝继璨, 李琳, 宋晶, 肖国勇, 胡知之, 王同华. 自具微孔聚合物PIM-1基热致刚性膜材料的制备及气体分离性能[J]. 材料导报, 2018, 32(16): 2876-2881.
[10] 莫宗云, 高小建. 偏高岭土改性混凝土的耐久性研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 115-119.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed