Please wait a minute...
材料导报  2022, Vol. 36 Issue (16): 21110087-8    https://doi.org/10.11896/cldb.21110087
  低碳生态路面材料 |
基于风积沙特性的固化剂组成设计及其固化机理研究
陈潇1,2,*, 卢亚磊2, 王稷良3, 杜新宇2
1 武汉理工大学硅酸盐建筑材料国家重点实验室,武汉 430070
2 武汉理工大学材料科学与工程学院,武汉 430070
3 交通运输部公路科学研究院道路结构与材料交通行业重点实验室,北京 100088
Study on Composition Design and Curing Mechanism of Curing Agent Based on Characteristics of Aeolian Sand
CHEN Xiao1,2,*, LU Yalei2, WANG Jiliang3, DU Xinyu2
1 State Key Laboratory of Silicate Materials for Architecture,Wuhan University of Technology, Wuhan 430070, China
2 School of Materials Science and Engineering, Wuhan University of Technology,Wuhan 430070, China
3 Key Laboratory of Road Structure & Materials of Communications, Research Institute of Highway of Ministry of Communicationgs, Beijing 100088, China
下载:  全 文 ( PDF ) ( 15890KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 风积沙颗粒细小均匀,呈圆球状,表面光滑,难以压实且与固化剂之间的胶结作用弱,因此其固化难度大,收缩严重。通过研究矿渣粒径与掺量、碱激发剂模数与碱当量、SO3含量对固化风积沙强度与收缩性能的影响规律,开发适用于风积沙的专用固化剂,并采用X射线衍射分析(XRD)、扫描电子显微镜(SEM)、固体核磁共振(NMR)以及压汞法(MIP)等微观测试手段揭示其作用机理。结果显示,通过掺入磨细矿渣、引入碱激发体系、提升 SO3掺量能显著提升固化风积沙强度,降低其干燥收缩。与普通 P.O42.5 水泥相比,采用专用固化剂固化风积沙,其28 d无侧限抗压强度提升73.8%,28 d干燥收缩应变降低40.8%。微观测试结果表明专用固化剂对风积沙的固化机理在于:采用磨细矿渣充填风积沙之间孔隙,改善了固化风积沙孔隙结构;采用水泥-碱激发矿渣双胶凝材料体系,增强了固化剂胶凝性能,改善了固化剂与风积沙之间界面;引入SO3,促进了AFt晶体生成,填充了固化风积沙内部孔隙以补偿收缩。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈潇
卢亚磊
王稷良
杜新宇
关键词:  固化风积沙  矿渣粒径  碱激发矿渣  SO3含量    
Abstract: The particles of aeolian sand are round, uniform and small, smooth surface, difficult to compact and it's weak cementation with curing agent, so it is difficult to cure and it's serious shrinkage. By studying the effects of slag size and admixing quantity of slag, modulus and alkali equivalent of alkali activator and SO3 admixing quantity of curing agent on the strength and shrinkage of solidified aeolian sand, a special curing agent suitable for aeolian sand was developed, and its action mechanism was revealed by means of XRD, SEM, NMR and MIP. The results show that the strength of solidified aeolian sand can be significantly improved by adding ground slag, introducing alkali excitation system and increasing the admixing quantity of SO3, and its drying shrinkage can be reduced. Compared with ordinary P.O42.5 water mud, the 28 d unconfined compressive strength can be increased by 73.8%, while the 28 d drying shrinkage strain decreased by 40.8%. The micro test results show that the curing mechanism of the special curing agent for aeolian sand is that the pores between aeolian sand are filled with ground slag powder to improve the pore structure of solidified aeolian sand and that the cement alkali excitation system is adopted to enhance the cementitious performance of curing agent and improves the interface between the curing agent and aeolian sand and that SO3 is introduced to promote the formation of AFt crystal and fills the internal pores of solidified aeolian sand to compensate for shrinkage.
Key words:  solidified aeolian sand    sandy soil diameter    alkali activated slag    SO3 admixing quantity
出版日期:  2022-08-25      发布日期:  2022-08-29
ZTFLH:  U414  
基金资助: 国家重点研发计划(2020YFC1909903)
通讯作者:  *chenxiao1981@whut.edu.cn   
作者简介:  陈潇,2009年6月毕业于武汉理工大学材料,获得博士学位。现任武汉理工大学硅酸盐建筑材料国家重点实验室副教授、全国煤基固废综合利用专家委员会副主任委员、中国硅酸盐学会固废分会委员、中国土木工程学会混凝土及预应力混凝土分会委员、中国固废资源化智库成员。主要从事工业固废资源化利用、生态道路工程材料、高性能混凝土等领域的理论研究、技术开发及工程应用相关工作。承担及参与了包括国家自然科学基金、交通运输部西部交通建设科技项目等在内的各类科研项目20余项。以第一作者或通讯作者发表学术论文50余篇,其中被SCI/EI收录30余篇。申请国家发明专利10余项(其中授权8项),参编行业或地方标准多部。
引用本文:    
陈潇, 卢亚磊, 王稷良, 杜新宇. 基于风积沙特性的固化剂组成设计及其固化机理研究[J]. 材料导报, 2022, 36(16): 21110087-8.
CHEN Xiao, LU Yalei, WANG Jiliang, DU Xinyu. Study on Composition Design and Curing Mechanism of Curing Agent Based on Characteristics of Aeolian Sand. Materials Reports, 2022, 36(16): 21110087-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21110087  或          http://www.mater-rep.com/CN/Y2022/V36/I16/21110087
1 Zhang C. Heavy mineral assemblages and provenance analysis of eolian sand in the Alashan Desert, Northwestern China.Master's Thesis, Lanzhou University, China, 2020(in Chinese).
张诚. 阿拉善沙漠风积砂重矿物组成及物源分析. 硕士学位论文, 兰州大学, 2020.
2 Xia H, Zhang J T, Cai J, et al. Advances in Materials Science and Engineering, 2020, 2020,1.
3 Zhang F Y. Research and analysis of uplift capacity on cementation aeo-lian sand foundation.Master's Thesis, Hefei University of Technology, China, 2020(in Chinese).
张飞阳. 水泥固化风积沙地基抗拔性能研究与分析. 硕士学位论文, 合肥工业大学, 2020.
4 Li D, Tian K L, Zhang H L, et al. Construction and Building Materials, 2018, 172, 251.
5 Maleki M, Ebrahimi S, Asadzadeh F, et al. International Journal of Environmental Science and Technology, 2016, 13(3), 1.
6 Lai J H, Zhang K, Wang W S, et al. Journal of Desert Research, 2017,37 (4), 644(in Chinese).
赖俊华,张凯,王维树,等. 中国沙漠, 2017, 37(4), 644.
7 Li J, Wang F C, Yi F, et al. Materials, 2019,12(17),2081.
8 Liu J F, Su Y H. Journal of Highway and Transportation Research and Development (English Edition), 2017, 11(2), 32.
9 Ran W P, Zhao J,Huang W Y, et al. Journal of Dalian University of Technology, 2018, 58 (2), 141(in Chinese).
冉武平, 赵杰, 黄文薏,等. 大连理工大学学报, 2018, 58(2), 141.
10 Wu M, Xie S H, Ge G W. Bulletin of the Chinese Ceramic Society, 2021, 40 (8), 2640(in Chinese).
吴旻,谢胜华,葛根旺. 硅酸盐通报, 2021, 40(8), 2640.
11 Zhang Y, Li W S, Li J. Subgrade Engineering, 2010(1), 32(in Chinese).
张雁, 李维生, 李娟. 路基工程, 2010(1), 32.
12 Zhao Q Y. Jianshe Gongcheng Lilun Yu Shijian,2005(00),206(in Chinese).
赵其永. 建设工程理论与实践, 2005(00), 206.
13 Krizan D, Zivanovic B. Cement and Concrete Research, 2002, 32(8),1181.
14 Bakharev T, Sanjayan J G, Cheng Y B. Cement and Concrete Research, 2000, 30, 1367.
15 Chen X, Zhu G R, Zhou M K, et al. Construction and Building Mate-rials, 2018, 167,216.
16 Merzouki T, Bouasker M, Khalifa N, et al. Construction and Building Materials, 2013, 44(44), 368.
17 Aparicio N D, Cocks C F. Acta Metall Mater, 1995, 43(10), 3873.
18 Huang W Q, Lu Y. Chinese Journal of Geotechnical Engineering, 2006 (12), 2139(in Chinese).
黄晚清, 陆阳. 岩土工程学报, 2006(12), 2139.
19 Chen X, Peng J, Zhou M K. Concrete, 2008(2), 84(in Chinese).
陈潇, 彭劲, 周明凯. 混凝土, 2008(2), 84.
20 Wang F, Zhang Y J, Song Q, et al. Non-Metallic Mines, 2008 (3), 9(in Chinese).
王峰,张耀君,宋强,等. 非金属矿, 2008(3), 9.
21 Soutsos M, Boyle A P, Vinai R, et al. Construction and Building Mate-rials, 2016, 110, 355.
22 Sukmak P, Horpibulsuk S, Shen S. Construction and Building Materials, 2013, 40, 566.
23 Chen X, Zhou M K, Shen W G. Journal of Building Materials, 2009,12 (4), 418(in Chinese).
陈潇, 周明凯, 沈卫国. 建筑材料学报, 2009,12(4),418.
24 Chen Q H, Jiang Z W. Journal of Building Materials, 2020,23(1), 200(in Chinese).
陈迁好, 蒋正武. 建筑材料学报, 2020, 23(1), 200.
25 Chen P Y, Wang J L, Wang L, et al. Cement and Concrete Composites, 2019, 104, 103351.
26 Mikhailova O, Campo A D, Rovnanik P, et al. Cement and Concrete Composites, 2019, 99, 32.
27 Ma B, Li H, Li X, et al. Construction and Building Materials, 2016, 122, 242.
28 Barnes J R, Clague A D H, Clayden N J, et al. Journal of Materials Science Letters, 2004, 4(10), 1293.
29 Andersen M D, Jakobsen H J, Skibsted J. Cement and Concrete Research, 2004, 34(5), 857.
30 Wang Q, Kang S R, Wu L M, et al. Journal of Building Materials, 2020, 23 (1), 184(in Chinese).
王晴, 康升荣, 吴丽梅,等. 建筑材料学报, 2020, 23(1), 184.
31 Kumar R, Bhattacharjee B. Cement and Concrete Research, 2003, 33(1), 155.
[1] 于琦, 万小梅, 赵铁军, 王腾, 韩笑, 孙忠涛. 碱激发矿渣混凝土抗氯离子渗透性及电测试验方法研究[J]. 材料导报, 2022, 36(5): 20120067-6.
[2] 朱红光, 侯金良, 石晶, 葛洁雅, 吕威, 杨森, 李宗徽, 沈正艳. 碱激发材料修补普通混凝土的黏结面性能研究[J]. 材料导报, 2022, 36(16): 21030218-5.
[3] 万小梅,张宇,赵铁军,张淑文,程杨杰. 碱激发矿渣混凝土的力学性能[J]. 《材料导报》期刊社, 2018, 32(12): 2091-2095.
[4] 宋学锋,王骏,王艳. 纤维/混杂纤维-矿渣地质聚合物复合材料的弯曲强度与弯曲韧性*[J]. 材料导报编辑部, 2017, 31(22): 121-124.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed