Please wait a minute...
材料导报  2022, Vol. 36 Issue (24): 21070202-6    https://doi.org/10.11896/cldb.21070202
  无机非金属及其复合材料 |
料浆浓度与絮凝剂单耗对膏体堆存渗透性及破坏研究
尹升华1,2,*, 曹永1,2, 吴爱祥1,2, 侯永强1,2, 杨世兴1,2
1 北京科技大学土木与资源工程学院,北京 100083
2 北京科技大学金属矿山高效开采与安全教育部重点实验室,北京 100083
Study of Slurry Concentration and Flocculant Unit Consumption on the Permeability and Damage of Paste Stockpiles
YIN Shenghua1,2,*, CAO Yong1,2, WU Aixiang1,2, HOU Yongqiang1,2, YANG Shixing1,2
1 School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Key Laboratory of High-Efficient Mining and Safety of Metal Mines of Ministry of Education, University of Science and Technology Beijing, Beijing 100083, China
下载:  全 文 ( PDF ) ( 10309KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 开展膏体堆存变水头渗透试验,研究料浆浓度和絮凝剂单耗对膏体渗透系数的影响规律及渗透破坏方式。以某镍矿全尾矿为实验对象,采用TST-55型渗透仪测定28组试样的渗透系数。结果表明:未添加絮凝剂的试样的渗透系数随试样浓度的增加基本遵循二次函数递减规律,试样浓度能够显著影响试样的渗透性;当试样质量浓度为64%时,试样的渗透系数随絮凝剂单耗增加呈先降低后一直增大的趋势,当试样质量浓度为66%~70%时,试样的渗透系数随絮凝剂单耗增加呈先增加后减小再一直增大的趋势;在膏体质量浓度为68%、絮凝剂单耗为20 g/t的条件下,试样抵抗渗透破坏能力最强。从膏体堆存渗透性、渗流稳定性以及经济指标考察可知,该尾砂最佳临界排放质量浓度在66%~70%之间,絮凝剂单耗20 g/t进行膏体堆存效果最好,该室内试验可为膏体堆存技术提供理论支撑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
尹升华
曹永
吴爱祥
侯永强
杨世兴
关键词:  膏体堆存  料浆质量浓度  絮凝剂单耗  渗透系数  渗透破坏    
Abstract: Paste stockpile variable head permeation test was carried out to study the influence law of slurry concentration and flocculant unit consumption on the permeability coefficient of paste and the mode of permeation destruction. In this paper, the permeability coefficient of 28 sets of specimens was measured by TST-55 type permeameter with a nickel mine whole tailings as the experimental object. The results show that the permeability coefficient of specimens without flocculants follows the law of decreasing quadratic function with concentration of specimens increasing, and the concentration of specimens can significantly affect the permeability of specimens. When the mass concentration of specimens is 64%, the permeability coefficient of specimens first decreases and then increases with the increase of flocculant unit consumption; when the mass concentration of the sample is 66% to 70%, the permeability coefficient of the sample increases first and decreases with the increase of the flocculant unit consumption, but then increases all the time; under the condition that the mass concentration of the paste is 68% and the unit consumption of the flocculant is 20 g/t, the sample has the strongest resistance to permeation damage. From the examination of the permeability, seepage stability and economic indexes of the paste stockpile, it can be concluded that the best critical discharge mass concentration of the tailing sand is between 66% and 70%, that the effect of the flocculant unit consumption of 20 g/t for the paste stockpile is the best , and that this indoor test can provide theoretical support for the paste stockpile technology.
Key words:  paste stockpile    paste mass concentration    flocculant unit consumption    permeability coefficient    permeation damage
发布日期:  2023-01-03
ZTFLH:  TD853  
基金资助: 国家自然科学基金重点项目(51734001);中央高校基本科研业务费专项资金(FRT-TP-18-003C1)
通讯作者:  ustxsh@163.com   
作者简介:  尹升华,北京科技大学土木与资源工程学院教授、博士研究生导师。2003年中南大学资源与安全工程学院采矿工程专业本科毕业,2006年中南大学资源与工程学院采矿工程专业硕士毕业,2010年北京科技大学采矿工程专业博士毕业后留校任教至今,目前主要从事溶浸采矿、金属矿高效开采及矿山岩体力学等方面的研究工作。发表论文100余篇,包括Construction and Building Materials, International Journal of Minerals、Metallurgy and Materials、 Bioresource Technology、 Engineering Geology等。
引用本文:    
尹升华, 曹永, 吴爱祥, 侯永强, 杨世兴. 料浆浓度与絮凝剂单耗对膏体堆存渗透性及破坏研究[J]. 材料导报, 2022, 36(24): 21070202-6.
YIN Shenghua, CAO Yong, WU Aixiang, HOU Yongqiang, YANG Shixing. Study of Slurry Concentration and Flocculant Unit Consumption on the Permeability and Damage of Paste Stockpiles. Materials Reports, 2022, 36(24): 21070202-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21070202  或          http://www.mater-rep.com/CN/Y2022/V36/I24/21070202
1 Gu H K. Multipurpose Utilization of Mineral Resources, 2017(6), 93(in Chinese).
谷泓坤. 矿产综合利用, 2017(6), 93.
2 Liu H L, Wang W P, He C Y, et al. Modern Mining, 2018(6), 1(in Chinese).
刘海林, 汪为平, 何承尧, 等. 现代矿业, 2018, 34(6), 1.
3 Wang Y, Wang H J, Wu A X, et al. Gold, 2012, 33(1), 48(in Chinese).
王勇, 王洪江, 吴爱祥, 等. 黄金, 2012, 33(1),48.
4 Wang H J, Chen Q R, Wu A X, et al. Journal of University of Science and Technology Beijing, 2011, 33(6), 676(in Chinese).
王洪江, 陈琴瑞, 吴爱祥, 等. 北京科技大学学报, 2011, 33(6), 676.
5 Wu A X, Yang Y, Cheng H Y, et al. Journal of Engineering Sciences, 2018, 40(5), 517(in Chinese).
吴爱祥, 杨莹, 程海勇, 等. 工程科学学报, 2018, 40(5), 517.
6 Wu A X, Wang Y, Wang H J. Metal Mine, 2016(7), 1(in Chinese).
吴爱祥, 王勇, 王洪江. 金属矿山, 2016(7), 1.
7 Zhang L Z, Yi Y L, Xue W, et al. Hunan Nonferrous Metals, 2019, 35(4), 15(in Chinese).
张立征,易运来,薛伟,等. 湖南有色金属,2019, 35(4), 15.
8 Wu A X, Li H, Cheng H Y, et al. Journal of Engineering Science,2020, 42(7), 803(in Chinese).
吴爱祥, 李红, 程海勇, 等. 工程科学学报, 2020, 42(7), 803.
9 Palmes J R, Laskowski J S. Fuel and Energy Abstracts, 1995, 36(3), 218.
10 Tao D, Groppo J G, Parekh B K, et al. Minerals Engineering, 2000, 13(2), 163.
11 Somasundaran P, Das K K, Xiang Y. Current Opinion in Colloid & Interface Science, 1996, 1(4), 530.
12 Shankar S A R, et al. Bulletion of Materials Science, 1988, 10(5), 423.
13 Richard Jewell, Andy Fourie, Sergio Barterra. Paste 2009. Australian Centre for Geomechanics, Australia, 2006.
14 Aguilar M I, Sáez J, Lloréns M, et al. Chemosphere, 2005, 58 (1), 47.
15 Feng L, Stuar M C, Adachi Y. Advances in Colloid and Interface Science, 2015, 226, 101.
16 Laskowski J S, Yu Z. International Journal of Mineral Processing, 2000, 58(1), 237.
17 McCormick C L, Bock J, Schulz D N. Encyclopedia of polymer science and engineering(2nd),Wiley-Interscience, New York, USA, 1989, pp.730.
18 Hu X M, Luo Q, Wang C R. et al. Mining and Metallurgy, 1996(1), 40(in Chinese).
胡筱敏, 罗茜, 王常任. 矿冶, 1996(1), 40.
19 Shi C S, Xie G Y. Coal Preparation Technology, 2003, 6(3), 19(in Chinese).
石常省, 谢广元. 选煤技术, 2003, 6(3), 19.
20 Ren X F. Selection and optimization of dewatering auxiliaries for fine coal slime. Master's Thesis, Taiyuan University of Technology, China, 2018(in Chinese).
任晓玢. 细粒煤泥脱水助剂选择与优化. 硕士学位论文, 太原理工大学, 2018.
21 Wang H J, Wang Y, Wu A X, et al. Journal of Wuhan University of Technology, 2011, 33(6), 85(in Chinese).
王洪江, 王勇, 吴爱祥, 等. 武汉理工大学学报, 2011, 33(6), 85.
22 Deng Y F, Liu S Y, Zhang D W, et al. Northwestern Seismological Journal, 2011, 33(S), 64(in Chinese).
邓永锋,刘松玉,章定文,等.西北地震学报, 2011,33(增刊),64.
23 Fall M, Nasir O. In:Proceedings of the 13th International Seminar on Paste and Thickened Tailings. Australian Centre for Geomechanics, Toronto, 2010, pp.125.
24 Grabinsky M W. In: Proceedings of the 13th International Seminar on Paste and Thickened Tailings. Australian Centre for Geomechanics, Toronto, 2010, pp.85.
25 Belem T, Fourie A B, Fahey M. In:Proceedings of the 13th International Seminar on Paste and Thickened Tailings. Australian Centre for Geomechanics, Toronto, 2010, pp.147.
26 Nasir O, Fall M. Tunnelling and Underground Space Technology, 2010, 25(1), 9.
27 Wang Y, Wu A X, Wang H J, et al. Journal of University of Science and Technology Beijing, 2014, 36(7), 855(in Chinese).
王勇, 吴爱祥, 王洪江, 等. 北京科技大学学报, 2014, 36(7), 855.
28 Liu T Y. Technology and application of filling mining, Metallurgical Industry Press, China, 2001(in Chinese).
刘同有.充填采矿技术与应用, 冶金工业出版社, 2001.
29 Zhan H H, Long X B, Zhan X H, Fluid mechanic chemistry theory, Central South University Press, China, 2007(in Chinese).
湛含辉, 龙小兵, 湛雪辉. 流体力化学原理, 中南大学出版社, 2007.
[1] 吴贤国, 王雷, 陈虹宇, 冯宗宝, 覃亚伟, 徐文胜. 基于随机森林-NSGAⅡ高性能混凝土耐久性配合比的多目标优化研究[J]. 材料导报, 2022, 36(17): 20110015-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed