Please wait a minute...
材料导报  2022, Vol. 36 Issue (24): 21070133-7    https://doi.org/10.11896/cldb.21070133
  无机非金属及其复合材料 |
UHPC与石材的粘结界面抗剪性能试验研究
马兴林1,2, 杨俊1,2,3,*, 周建庭1,2, 王劼耘3, 张中亚1,2, 苏昊2, 王宗山2
1 重庆交通大学山区桥梁及隧道工程国家重点实验室,重庆 400074
2 重庆交通大学土木工程学院,重庆 400074
3 广西交通投资集团有限公司,南宁 530022
Experimental Research on the Shear Property of Interfacial Bonding Between UHPC and Stone
MA Xinglin1,2, YANG Jun1,2,3,*, ZHOU Jianting1,2, WANG Jieyun3, ZHANG Zhongya1,2, SU Hao2, WANG Zongshan2
1 State Key Laboratory of Mountain and Tunnel Engineering, Chongqing Jiaotong University, Chongqing 400074, China
2 School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China
3 Guangxi Communications Investment Group Corporation Ltd.,Nanning 530022, China
下载:  全 文 ( PDF ) ( 8491KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 由于荷载等级提高、超重超载车辆增多、圬工材料风化剥落等诸多原因,大量在役石拱桥面临性能退化问题,因此,提出采用UHPC对石拱桥进行维修加固的新技术。为明晰UHPC与石材界面的粘结性能,从贵州某服役30年石拱桥位处选取原位石料,设计四组直剪试验构件,分别为单排植筋(ZJ1)、双排植筋(ZJ2)、单排植筋蒸养(ZJ3)、凿毛(ZM),考察不同界面粘结方式对UHPC-石材抗剪性能的影响。结果表明:UHPC与石材的粘结界面抗剪强度高,承载潜力大,通过界面植筋处理,最大可将构件的延性提升17倍;单纯采用凿毛处理的UHPC-石材试件,界面处是构件剪切破坏的薄弱面,而增加植筋的构件以石材劈裂破坏为主;界面植筋率提升100%后,可将界面极限抗剪承载能力提升392%;UHPC的蒸汽养护对构件的界面抗剪承载能力存在负面影响,导致其抗剪承载力降低0.4 MPa;分析加载过程中的应力传递规律,可为同类型的优化加固提出两点建议,一是通过植筋作用保证界面均匀协同受力,二是考虑在靠近加载侧部位进行加强配置以优化结构受力。最后,推导了UHPC-石材植筋界面剪切承载能力计算公式,结果表明可忽略植入钢筋的摩擦抗剪作用对界面粘结强度的贡献。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马兴林
杨俊
周建庭
王劼耘
张中亚
苏昊
王宗山
关键词:  桥梁加固  直剪试验  超高性能混凝土(UHPC)  石材    
Abstract: Due to the increase of load level, overweight vehicles, and peeling of masonry materials, many stone arch bridges in service is facing the problem of performance degradation. A new technology of using UHPC to repair and strengthen the stone arch bridges is proposed. In order to clarify the bonding performance of UHPC and stone interface, four groups of direct shear test components were designed while stones were selected from a stone arch bridge sited in Guizhou for 30 years, including single row planting reinforcement (ZJ1), double row planting reinforcement (ZJ2), single row planting reinforcement with steam curing (ZJ3), roughening (ZM). The effects of different bonding modes on the shear resistance of UHPC masonry stone were investigated. Results show that: the shear strength and bearing potential of the bonding interface between UHPC and stone are high. The ductility of the components can increase 17 times by the treatment of reinforcement; the interface of UHPC-stone specimen treated by chipping is the weak point of shear failure while the component with bars mainly broke as stone splitting; when the reinforcement planting rate of the interface is increased by 100%, the ultimate shear capacity of the interface can be increased by 392%; the steam maintenance of UHPC has a negative effect on the shear capacity of the interface, which leads to the reduction of shear capacity by 0.4 MPa; two suggestions can be put forward for the same type of optimization reinforcement by analyzing the stress transfer law in the loading process. One is to ensure the uniform and collaborative force of the interface by planting reinforcement, and the other is to consider strengthening configuration near the loading side to optimize the structural stress. Finally, the calculation formula of shear capacity of UHPC stone planting reinforcement interface is derived. The results show that the contribution of anchor bar deformation to the bond strength of the interface can be ignored.
Key words:  bridge reinforcement    direct shear test    ultra high performance concrete (UHPC)    stone
发布日期:  2023-01-03
ZTFLH:  U448.22  
基金资助: 国家自然科学基金青年基金(51908093);重庆市自然科学基金(cstc2020jcyj-msxmX0088; cstc2020jcyj-bshX0007);湖北省交通运
输厅科技项目(2020-2-1-1; 2020-186-1-6);重庆市教委科技青年项目(KJQN201900733);中国博士后科学基金(2021M693919);重庆交通大学研究生科研创新基金(2020B0004)
通讯作者:  yangjun@cqjtu.edu.cn   
作者简介:  马兴林,2015年毕业于重庆交通大学,获得工学学士学位,重庆交通大学土木工程学院2019级硕士研究生,在周建庭教授、杨俊副教授的指导下从事旧危桥梁加固与工程结构性能提升、桥梁新结构与超高性能混凝土(UHPC)材料等研究。
杨俊,副教授,硕士研究生导师,2019年6月毕业于重庆交通大学,获得工学博士学位,现为重庆交通大学土木工程学院教师、山区桥梁及隧道工程国家重点实验室研究人员。主要从事桥梁工程相关的教学科研工作,研究方向包括:旧危桥梁加固与工程结构性能提升;桥梁新结构与超高性能混凝土(UHPC)材料研发与应用等。发表论文26篇,第一作者SCI/EI收录9篇。
引用本文:    
马兴林, 杨俊, 周建庭, 王劼耘, 张中亚, 苏昊, 王宗山. UHPC与石材的粘结界面抗剪性能试验研究[J]. 材料导报, 2022, 36(24): 21070133-7.
MA Xinglin, YANG Jun, ZHOU Jianting, WANG Jieyun, ZHANG Zhongya, SU Hao, WANG Zongshan. Experimental Research on the Shear Property of Interfacial Bonding Between UHPC and Stone. Materials Reports, 2022, 36(24): 21070133-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21070133  或          http://www.mater-rep.com/CN/Y2022/V36/I24/21070133
1 Feng Yonghang. Scientific and Technological Innovation, 2019(13), 137(in Chinese).
冯永航. 科学技术创新, 2019(13), 137.
2 Zhou Jianting. New reinforcement technology for large and medium bridges, China Communications Press, China, 2010, pp.11(in Chinese).
周建庭. 大中型桥梁加固新技术. 人民交通出版社, 2010, pp.11.
3 Farzad M, Sadeghnejad A, Rastkar S, et al. Engineering Structures, 2020, 209, 109928.
4 Shao Xudong, Qiu Minghong, Yan Banfu, et al. Materials Reports A:Review Papers, 2017, 31(12), 33(in Chinese).
邵旭东, 邱明红, 晏班夫, 等. 材料导报:综述篇, 2017, 31(12), 33.
5 Liu Chao, Huang Yuhao, Lu Yuanchun. Journal of Tongji University(Nature Science), 2019, 47(3), 322(in Chinese).
刘超, 黄钰豪, 陆元春. 同济大学学报(自然科学版), 2019, 47(3), 322.
6 Brühwiler E, Brühwiler E, Denarié E, et al. Structural Engineering International, 2013, 23(4), 450.
7 Zhou Z, Qiao P. Construction and Building Materials, 2018, 182(10), 406.
8 Zhao Jun, Lian Huizhen, Jin Jianchang. China Concrete, 2014(1), 48(in Chinese).
赵筠, 廉慧珍, 金建昌. 混凝土世界, 2014(1), 48.
9 Zhao Jun, Lian Huizhen, Jin Jianchang. China Concrete, 2013(12), 60(in Chinese).
赵筠, 廉慧珍, 金建昌. 混凝土世界, 2013(12), 60.
10 Zhao Jun, Lian Huizhen, Jin Jianchang. China Concrete, 2013(10), 56(in Chinese).
赵筠, 廉慧珍, 金建昌. 混凝土世界, 2013(10), 56.
11 Yang Jun, Zhou Jianting, Zhang Zhongya, et al. China Journal of Highway and Transport, 2021, 34(8), 132(in Chinese).
杨俊, 周建庭, 张中亚, 等. 中国公路学报, 2021, 34(8), 132.
12 Wang Z, Zhou J, Yang J, et al. Advances in Civil Engineering, 2020, 2020, 1.
13 Yang Jun, Zhou Jianting, Cheng Jun, et al. Bridge Construction, 2018, 48(4), 74 (in Chinese).
杨俊, 周建庭, 程俊, 等. 桥梁建设, 2018, 48(4), 74.
14 Wang Nan. Experimental research on bonding mechanical performance between ultra high toughness cementitious composites(UHTCC) and existing concrete. Ph. D. Thesis, Dalian University of Technology, 2011(in Chinese).
王楠. 超高韧性水泥基复合材料与既有混凝土粘结工作性能试验研究. 博士学位论文. 大连理工大学, 2011.
15 Wang Bing. Ultrahigh toughness cementitious composite: its bond behavior with concrete and structural application for flexural strengthening of RC beams. Ph. D. Thesis, Dalian University of Technology, China, 2011(in Chinese).
王冰. 超高韧性水泥基复合材料与混凝土的界面粘结性能及其在抗弯补强中的应用. 博士学位论文. 大连理工大学, 2011.
16 Wang Xingwang. Research on the interfacial shear behavior of UHPC and reinforced concrete. Master's Thesis, Hunan University, China, 2016(in Chinese).
王兴旺. UHPC与普通钢筋混凝土结构界面抗剪性能研究. 硕士学位论文. 湖南大学, 2016.
17 Li Zhongxian, Zhang Xuejie, Shi Yanchao. Engineering Structures, 2020, 216, 110788.
18 Haber Z B, Graybeal B A, Nakashoji B. Journal of Bridge Engineering, 2020, 25(7), 4020038
19 Ganesh P, Murthy A R. Construction and Building Materials, 2020, 250, 118871.
20 Rashid K, Ahmad M, Ueda T, et al. Construction and Building Materials, 2020, 249, 118798.
21 Wang Xuan, Lam Chi Chiu, Iu Vai Pan. Construction and Building Materials, 2020, 253, 119157.
22 Yuan Cheng, Chen Wensu, Pham Thong, et al. Construction and Building Materials, 2020, 255, 118939.
23 Cai Wei, Fang Hai, Liu Weiqing, et al. Journal of Building Structures, 2020, 41(S2), 443(in Chinese).
蔡炜, 方海, 刘伟庆, 等. 建筑结构学报, 2020, 41(S2), 443.
24 Zhang Miao, Qian Yongjiu, Zhang Fang, et al. Journal of Disaster Prevention and Mitigation Engineering, 2020, 40(6), 952 (in Chinese).
张淼, 钱永久, 张方, 等. 防灾减灾工程学报, 2020, 40(6), 952.
25 Pi Zhengbo, Liao Xiaohui, Wei Qike, et al. Journal of Building Structures, 2019, 40(7), 146(in Chinese).
皮正波, 廖小辉, 魏奇科, 等. 建筑结构学报, 2019, 40(7), 146.
26 Zhang Yang, Wang Xingwang. Journal of China & Foreign Highway, 2017, 37(2), 105(in Chinese).
张阳, 王兴旺. 中外公路, 2017, 37(2), 105.
27 Semendary A A, Svecova D. Engineering Structures, 2020, 216, 0010746.
28 Huang Lu. In:Proceedings of the 25th National Conference on Structural Engineering (Volume III). Baotou, Inner Mongolia, 2016, pp. 306(in Chinese).
黄璐. 第25届全国结构工程学术会议论文集(第Ⅲ册). 内蒙古包头, 2016, pp. 306.
29 Fan Liang, Study on the shear behaviors of pre-casting and post-casting concrete interface. Master's Thesis, Chongqing Jiaotong University, China, 2004 (in Chinese).
范亮. 先后浇混凝土界面抗剪性能研究. 硕士学位论文, 重庆交通学院, 2004.
[1] 史金华, 史才军, 欧阳雪, 刘剑辉, 黄勇, 吴泽媚. 超高性能混凝土受压弹性模量研究进展[J]. 材料导报, 2021, 35(3): 3067-3075.
[2] 周建庭, 胡天祥, 杨俊, 周璐, 孙航行. 键槽构造UHPC-NC界面黏结性能试验研究[J]. 材料导报, 2021, 35(16): 16050-16057.
[3] 邓宗才, 赵连志, 连怡红. 膨胀剂、减缩剂对超高性能混凝土圆环约束收缩性能的影响[J]. 材料导报, 2021, 35(12): 12070-12074.
[4] 王舒永, 张凌凯, 陈国新, 袁俊. 基于三维扫描技术的土石混合体离散元模型参数反演及直剪模拟[J]. 材料导报, 2021, 35(10): 10088-10095.
[5] 徐彬彬, 欧忠文, 罗伟, 刘娜, 袁旺, 付来平. 饱水轻骨料和减缩剂对UHPC水化过程和自收缩的影响[J]. 材料导报, 2020, 34(22): 22065-22069.
[6] 胡扬轩,邓朝晖,万林林,李 敏. 用于蓝宝石材料加工的新型超精密抛光技术及复合抛光技术研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1452-1458.
[7] 朋改非, 牛旭婧, 成铠. 超高性能混凝土的火灾高温性能研究综述*[J]. CLDB, 2017, 31(23): 17-23.
[8] 邵旭东, 邱明红, 晏班夫, 罗军. 超高性能混凝土在国内外桥梁工程中的研究与应用进展*[J]. CLDB, 2017, 31(23): 33-43.
[9] 季韬, 林晓溁, 梁咏宁, 陈宝春, 杨政险. 钢纤维对掺花岗岩石粉UHPC的增强增韧:磷酸锌改性和纤维形状的影响及机理*[J]. CLDB, 2017, 31(23): 66-72.
[10] 王倩楠, 顾春平, 孙伟. 水泥-粉煤灰-硅灰基超高性能混凝土水化过程微观结构的演变规律*[J]. CLDB, 2017, 31(23): 85-89.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed