Please wait a minute...
材料导报  2021, Vol. 35 Issue (16): 16050-16057    https://doi.org/10.11896/cldb.20070033
  无机非金属及其复合材料 |
键槽构造UHPC-NC界面黏结性能试验研究
周建庭1,2, 胡天祥2, 杨俊1,2, 周璐3, 孙航行2
1 重庆交通大学省部共建山区桥梁及隧道工程国家重点实验室,重庆 400074;
2 重庆交通大学土木工程学院,重庆 400074;
3 广西交通设计集团,南宁 530029
Experimental Investigation on Bonding Behavior of UHPC-NC Interface in Keyway Structure
ZHOU Jianting1,2, HU Tianxiang2, YANG Jun1,2, ZHOU Lu3, SUN Hangxing2
1 State Key Laboratory of Mountain Bridge and Tunnel Engineering, Chongqing Jiaotong University, Chongqing 400074, China;
2 School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China;
3 Guangxi Communications Design Group Co., Ltd., Nanning 530029, China
下载:  全 文 ( PDF ) ( 5777KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用超高性能混凝土(UHPC)加固桥梁,UHPC与既有普通混凝土(NC)结构界面间的黏结性能是保证加固效果的关键。为研究界面构造对UHPC-NC界面黏结性能的影响,以键槽布置和形状为变量,开展键槽构造UHPC-NC单面直接剪切试验,并与界面黏贴处理试件进行对比。结果表明:UHPC-NC黏结界面的破坏形态主要可分为四种,其中c、d类破坏(黏结界面与NC出现破坏)占总破坏形态的80%;键槽构造组的界面黏结性能优于黏贴组,其界面黏结抗剪强度比黏贴组高2倍左右;当键槽口宽度较小(10~20 mm)即体积损失率低于0.09时,UHPC-NC界面黏结抗剪强度随键槽口宽度的增大而增大;正梯形键槽试件的界面黏结抗剪强度比直角形键槽试件高25%左右,倒梯形键槽试件的界面黏结抗剪强度比直角形键槽试件高13%~15%;键槽构造UHPC-NC界面黏结-滑移曲线包含弹性上升阶段、屈服阶段和破坏下降阶段,部分曲线无屈服阶段,其极限滑移值均在0.8 mm以下。本工作提出了键槽构造UHPC-NC界面黏结-滑移模型,并给出了黏结刚度建议值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周建庭
胡天祥
杨俊
周璐
孙航行
关键词:  桥梁工程  高性能混凝土  桥梁加固  界面黏结性能  荷载滑移曲线  键槽构造    
Abstract: Ultra-high performance concrete (UHPC) is used to reinforce the bridge. The bonding performance between UHPC and the existing ordinary concrete (NC) structure interface is the key to ensuring the reinforcement effect. In order to study the influence of the interface structure on the bonding performance of the UHPC-NC interface, the keyway layout and shape are used as variables to carry out a single-sided direct shear test of the keyway structure UHPC-NC, and compare with the interface paste treatment specimen. The test results show that the failure modes of the UHPC-NC bonding interface can be mainly divided into four types, of which types c and d failure (the failure of the bonding interface and NC) accounts for 80% of the total failure modes; the interface bonding performance of the keyway structure group is better than the paste group, the shear strength of the interface bond is about 2 times higher than that of the paste group; when the width of the key notch is small (10—20 mm), that is, when the volume loss rate is less than 0.09, the shear strength of the UHPC-NC interface bond increases with the increase of the width of the key notch; the interface bonding shear strength of the normal trapezoidal keyway specimen is about 25% higher than that of the right angle keyway specimen, and the interface bonding shear strength of the inverted trapezoidal keyway specimen is 13%—15% higher than that of the right angle keyway specimen; the keyway structure UHPC-NC interface bond-slip curve includes an elastic rising phase, a yielding phase, and a failure falling phase. Some curves have no yielding phase, and their ultimate slip values are all below 0.8 mm. The keyway structure UHPC-NC interface bond-slip model is proposed, and the recommended value of bond stiffness is given.
Key words:  bridge engineering    ultra-high performance concrete    bridge strengthening    interface bonding behavior    load sliding curve    keyway structure
发布日期:  2021-09-07
ZTFLH:  U444  
基金资助: 中国工程院咨询研究项目(2019-CQ-ZD-4);国家自然科学基金青年基金项目(51908093);重庆市自然科学基金创新群体科学基 金(cstc2019jcyj-cxttX0004);贵州省交通运输厅科技项目(2018-123-001)
通讯作者:  yangjun@cqjtu.edu.cn   
作者简介:  周建庭,博士、博士后,博士研究生导师,国家杰青,长江学者,现为重庆交通大学副校长、山区桥梁与隧道工程国家重点实验室主任、桥梁结构智能感知与控制重庆市重点实验室主任,围绕结构安全监测、评价与加固方向开展科学研究。主持和主研了国家科技攻关项目、国家自然科学基金项目等国家、省部级项目20项,主持横向项目25项。
杨俊,男,工学博士,硕士研究生导师,重庆交通大学土木工程学院教师,现为省部共建山区桥梁及隧道工程国家重点实验室研究人员,主要从事桥梁工程相关的教学科研工作,研究方向包括:旧危桥梁加固与工程结构性能提升;桥梁新结构与超高性能混凝土(UHPC)材料等。发表论文14篇,第一作者SCI/EI收录5篇,主持国家自然科学基金青年科学基金项目1项、重庆市教委科技项目1项、重庆市科协项目1项。
引用本文:    
周建庭, 胡天祥, 杨俊, 周璐, 孙航行. 键槽构造UHPC-NC界面黏结性能试验研究[J]. 材料导报, 2021, 35(16): 16050-16057.
ZHOU Jianting, HU Tianxiang, YANG Jun, ZHOU Lu, SUN Hangxing. Experimental Investigation on Bonding Behavior of UHPC-NC Interface in Keyway Structure. Materials Reports, 2021, 35(16): 16050-16057.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070033  或          http://www.mater-rep.com/CN/Y2021/V35/I16/16050
1 Safdar M, Matsumoto T, Kakuma K. Composite Structures,2016,157,448.
2 Zhang W H, Liu P Y, Lv M J. Materials Reports A: Review Papers, 2019, 33(10), 3257(in Chinese).
张文华, 刘鹏宇, 吕毓静. 材料导报: 综述篇,2019,33(10),3257.
3 Han F Y, Liu J Z, Liu J P, et al. Materials Reports, 2019, 33(S1), 244(in Chinese).
韩方玉, 刘建忠, 刘加平, 等. 材料导报, 2019, 33(S1), 244.
4 Shao X D, Qiu M H, Yan B F, et al. Materials Reports A: Review Papers, 2017, 31(12), 33(in Chinese).
邵旭东, 邱明红, 晏班夫, 等. 材料导报: 综述篇, 2017, 31(12), 33.
5 Peng T, Wu C Q, Wu Z X, et al. Engineering Structures, 2019, 183, 780.
6 Mohamadtaqi B, Ehsan A, Sayyafi, H, et al. Civil Engineering Journal, 2017, 3(3), 190.
7 Li J, Wang W P, Pei B D, et al. China Journal of Highway and Transport, 2018, 31(5), 84(in Chinese).
李嘉, 王万鹏, 裴必达, 等. 中国公路学报, 2018, 31(5), 84.
8 Feng J W, Sun X M, Wang X Y. Construction and Building Materials, 2014, 69, 403.
9 Denarié E, Brühwiler E. Structural Engineering International, 2013, 23(4), 450.
10 Yang J, Zhou J T, Wang Z S, et al. Advances in Civil Engineering, 2019, 2019, 1.
11 Li V C. International Journal for Restoration, 2004, 10, 163.
12 Hussein H H, Walsh K K, Sargands M, et al. Journal of Materials in Civil Engineering, 2006, 28 (5), 04015208-1.
13 Pu Z, Liu H A, Gao D Y, et al. Journal of Composites for Construction, 2017, 21(4), 04017012.
14 Al-osta M A, Isa M N, Baluch M H, et al. Construction and Building Materials, 2017, 134, 279.
15 Tayeh B A, Bakar B H A, Johari M A M, et al. Journal of Adhesion Science & Technology, 2014, 28(18), 1846.
16 Tayeh B A, Bakar B H A, Johari M A M, et al. In: The 2nd Internatio-nal Conference on Rehabilitation and Maintenance in Civil Engineering. Solo, Indonesia, 2013.
17 Wang X W. Research on the interfacil shear behavior of UHPC and reinforced concrete. Master's Thesis, Hunan University, China, 2016(in Chinese).
王兴旺. UHPC与普通钢筋混凝土结构界面抗剪性能研究. 硕士学位论文, 湖南大学, 2016.
18 Wu X G, Zhang X C. Journal of Building Structures, 2018, 39(10), 156(in Chinese).
吴香国, 张孝臣. 建筑结构学报, 2018, 39(10), 156.
19 Zhang Y, Zhang C, Zhang Y, et al. Construction and Building Mate-rials, 2020, 236(117480), 1.
20 ACI. Concrete repair guide: ACI 546R-04, American Concrete Institute, USA, 2004.
21 Units C, Edition T. AASHTO LRFD Bridge Design Specifications (2010), American of State Highway and Transportation Officials, USA, 2010.
22 FIB 2010. Model Code for Concrete Structures 2010, Wiley-VCH Verlag GmbH & Co. KGaA, Switzerland, 2013.
23 Eurocode 2. General rules and rules for buildings, European Committee for Standardization, Brussels, 2004.
24 Li P X, Zhao G F, Zhang L S. Journal of Building Structures, 2004, 25(5), 111(in Chinese).
李平先, 赵国藩, 张雷顺. 建筑结构学报, 2004, 25(5), 111.
25 Zhao Z F, Zhao G F, Huang C K. Journal of Building Structures, 1999, 20(6), 26(in Chinese).
赵志方, 赵国藩, 黄承逵. 建筑结构学报, 1999, 20(6), 26.
[1] 褚洪岩, 高李, 秦健健, 汤金辉, 蒋金洋. 磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响[J]. 材料导报, 2022, 36(5): 20090345-5.
[2] 马俊军, 蔺鹏臻. 基于细观尺度的UHPC氯离子扩散预测CA模型[J]. 材料导报, 2022, 36(5): 21040188-6.
[3] 吴建东, 郭丽萍, 曹园章, 费香鹏. 超高性能混凝土早期600 ℃抗爆裂性能研究[J]. 材料导报, 2022, 36(3): 20110163-6.
[4] 龙广成, 杨恺, 程智清, 王慧慧, 石晔, 谢友均. 不同工艺制度下纳米颗粒对UHPC强度的影响[J]. 材料导报, 2022, 36(13): 21040093-6.
[5] 杨医博, 岳晓东, 姚丁语, 张迪, 郭文瑛, 王恒昌. 碱渣内养护剂对高强高性能混凝土自收缩及早期抗裂性能的影响及机理分析[J]. 材料导报, 2022, 36(12): 20020019-6.
[6] 杨玉柱, 黄维蓉, 耿嘉庆, 崔通, 晏茂豪. 基于半经验的UHPC配合比设计方法[J]. 材料导报, 2021, 35(z2): 188-193.
[7] 苏昊, 杨俊, 周建庭, 王劼耘, 王宗山, 马兴林. 基于DIC的UHPC加固锈蚀钢筋混凝土柱轴心受压性能研究[J]. 材料导报, 2021, 35(z2): 194-199.
[8] 龚建清, 罗鸿魁, 张阳, 龚啸, 谢泽酃, 吴五星, 戴远帆. 减缩剂和HCSA膨胀剂对UHPC力学性能和收缩性能的影响[J]. 材料导报, 2021, 35(8): 8042-8048.
[9] 史金华, 史才军, 欧阳雪, 刘剑辉, 黄勇, 吴泽媚. 超高性能混凝土受压弹性模量研究进展[J]. 材料导报, 2021, 35(3): 3067-3075.
[10] 白刚, 王里, 王芳, 程新睿. 3D打印UHPC的制备和力学性能试验研究[J]. 材料导报, 2021, 35(12): 12063-12069.
[11] 邓宗才, 赵连志, 连怡红. 膨胀剂、减缩剂对超高性能混凝土圆环约束收缩性能的影响[J]. 材料导报, 2021, 35(12): 12070-12074.
[12] 卢喆, 冯振刚, 姚冬冬, 纪鸿儒, 秦卫军, 于丽梅. 超高性能混凝土工作性与强度影响因素分析[J]. 材料导报, 2020, 34(Z1): 203-208.
[13] 褚洪岩, 蒋金洋, 李荷, 夏广林. 环保型细集料对超高性能混凝土力学性能的影响[J]. 材料导报, 2020, 34(24): 24029-24033.
[14] 徐彬彬, 欧忠文, 罗伟, 刘娜, 袁旺, 付来平. 饱水轻骨料和减缩剂对UHPC水化过程和自收缩的影响[J]. 材料导报, 2020, 34(22): 22065-22069.
[15] 韩方玉, 刘建忠, 刘加平, 马骉, 沙建芳, 王兴龙. 基于超高性能混凝土的钢筋锚固性能研究[J]. 材料导报, 2019, 33(z1): 244-248.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed