Please wait a minute...
材料导报  2021, Vol. 35 Issue (12): 12070-12074    https://doi.org/10.11896/cldb.20030051
  无机非金属及其复合材料 |
膨胀剂、减缩剂对超高性能混凝土圆环约束收缩性能的影响
邓宗才1, 赵连志2, 连怡红1
1 北京工业大学建筑工程学院,北京 100124
2 中国路桥工程有限责任公司,北京 100011
Influence of Expansion Agent and Shrinkage Reducing Agent on Circular Restrained Shrinkage of UHPC
DENG Zongcai1 , ZHAO Lianzhi2, LIAN Yihong1
1 College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
2 China Road and Bridge Corporation, Beijing 100011, China
下载:  全 文 ( PDF ) ( 2002KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究膨胀剂、减缩剂对超高性能混凝土(UHPC)圆环约束收缩性能的影响,开展了掺膨胀剂或减缩剂的UHPC的劈裂抗拉强度、弹性模量及圆环约束收缩试验研究,并对掺膨胀剂或减缩剂的UHPC的开裂风险、松弛性能进行了定量分析。分析结果表明:在本研究的掺量范围内,膨胀剂或减缩剂的掺入均提高了UHPC的7 d劈裂抗拉强度;膨胀剂或减缩剂的掺入均降低了各阶段的钢环应变,(28 d)最大降低幅度分别为30.7%、38.6%;膨胀剂的掺入使UHPC各龄期拉应力水平均降至安全控制值内,其中6%掺量的膨胀剂减缩效果最佳;减缩剂的掺入虽降低了UHPC的(3 d)拉应力水平,但拉应力水平仍高于安全控制值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邓宗才
连怡红
赵连志
关键词:  超高性能混凝土(UHPC)  膨胀剂  减缩剂  圆环约束收缩    
Abstract: In order to research the effect of expansion agent or shrinkage reducing agent on the circular restrained shrinkage of UHPC, experimental study on splitting tensile strength, elastic modulus and circular restrained shrinkage of UHPC with expansion agent or shrinkage reducing agent was carried out. The cracking risk and relaxation property of UHPC with expansion agent or shrinkage reducing agent were quantitatively analyzed. The results show that the splitting tensile strength after 7 d of age of UHPC was improved by adding expansion agent or shrinkage reducing agent. The strain of steel ring in each stage was reduced by adding expansion agent or shrinkage reducing agent and the maximum reduction range was 30.7% and 38.6% in 28 d. The tensile stress level of UHPC at all ages decreased to the safe control value with the addition of expansion agent. Among them, when the content of expansion agent was 6%, the effect of reduction was the best.
Key words:  ultra-high performance concrete (UHPC)    expansion agent    shrinkage reducing agent    circular restrained shrinkage
               出版日期:  2021-06-25      发布日期:  2021-07-01
ZTFLH:  TU528  
基金资助: 北京教委重点项目(KZ201810005008)
通讯作者:  dengzc@bjut.edu.cn   
作者简介:  邓宗才,北京工业大学教授,博士研究生导师。长期从事现代工程材料及其结构等研究。主持国家863项目1项,主持或参加完成国家自然科学基金7项。在重要学术刊物发表学术论文300余篇,在国外著名学术刊物发表论文20余篇,被SCI、EI收录200余篇次。
引用本文:    
邓宗才, 赵连志, 连怡红. 膨胀剂、减缩剂对超高性能混凝土圆环约束收缩性能的影响[J]. 材料导报, 2021, 35(12): 12070-12074.
DENG Zongcai, LIAN Yihong, ZHAO Lianzhi. Influence of Expansion Agent and Shrinkage Reducing Agent on Circular Restrained Shrinkage of UHPC. Materials Reports, 2021, 35(12): 12070-12074.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20030051  或          http://www.mater-rep.com/CN/Y2021/V35/I12/12070
1 Wang J Y, Bian C, Xiao R C, et al. China Journal of Highway and Transport, 2019, 32(9),115(in Chinese).
王俊颜, 边晨, 肖汝诚, 等. 中国公路学报, 2019, 32(9), 115.
2 Li H R. Research on cementitious materials restrained shrinkage test methods. Ph.D. Thesis, Tianjin University, China, 2011 (in Chinese).
李浩然. 水泥基材料约束收缩试验方法研究. 博士学位论文, 天津大学, 2015.
3 Hossain A B, Weiss J. Cement & Concrete Composites, 2004, 26(5),531.
4 Corinaldesi V, Nardinocchi A, Donnini J.Construction and Building Materials, 2015, 91, 171.
5 Meddah M S, Suzuki M, Sato R. Construction and Building Materials, 2011, 25, 239.
6 Wang J Y, Bian C, Xiao R C, et al. Materials Reports, 2017, 31(23), 52 (in Chinese).
王俊颜, 边晨, 肖汝诚, 等.材料导报, 2017, 31(23), 52.
7 Park J J, Yoo D Y, Kim S W, et al. Magzine of Concrete Research, 2014, 66(14), 745.
8 Wang Y C, Zhang J F, Yang H Q, et al. Concrete, 2010(1), 136 (in Chinese).
王迎春, 张建峰, 杨华全, 等. 混凝土, 2010(1),136.
9 Li C, Chen B C, Huang Q W. Engineering Mechanics, 2019, 36(8), 49(in Chinese).
李聪, 陈宝春, 黄卿维. 工程力学, 2019, 36(8), 49.
10 Ma X W, Li X Y, Zhu W Z, et al. Journal of Building Materials, 2006(5),598 (in Chinese).
马新伟, 李学英, 朱卫中, 等. 建筑材料学报, 2006(5), 598.
11 Li C, Huang W, Chen B C. Journal of Fuzhou University( Natural Science Edition ), 2019, 47(2),251(in Chinese).
李聪, 黄伟, 陈宝春. 福州大学学报(自然科学版), 2019, 47(2), 251.
[1] 龚建清, 罗鸿魁, 张阳, 龚啸, 谢泽酃, 吴五星, 戴远帆. 减缩剂和HCSA膨胀剂对UHPC力学性能和收缩性能的影响[J]. 材料导报, 2021, 35(8): 8042-8048.
[2] 史金华, 史才军, 欧阳雪, 刘剑辉, 黄勇, 吴泽媚. 超高性能混凝土受压弹性模量研究进展[J]. 材料导报, 2021, 35(3): 3067-3075.
[3] 卢京宇, 王林, 雍涵, 王佩勋, 李超. 复掺膨胀剂和纤维对混凝土性能的影响[J]. 材料导报, 2020, 34(Z2): 618-622.
[4] 储腾跃, 李矜, 赵学超, 董兵海, 李磊. 高流态高强混凝土收缩性能改善研究[J]. 材料导报, 2020, 34(Z1): 213-215.
[5] 徐彬彬, 欧忠文, 罗伟, 刘娜, 袁旺, 付来平. 饱水轻骨料和减缩剂对UHPC水化过程和自收缩的影响[J]. 材料导报, 2020, 34(22): 22065-22069.
[6] 丁新东, 曹新明. 不同膨胀剂掺量的钢管混凝土短柱轴压试验研究[J]. 材料导报, 2019, 33(Z2): 327-330.
[7] 朋改非, 牛旭婧, 成铠. 超高性能混凝土的火灾高温性能研究综述*[J]. CLDB, 2017, 31(23): 17-23.
[8] 邵旭东, 邱明红, 晏班夫, 罗军. 超高性能混凝土在国内外桥梁工程中的研究与应用进展*[J]. CLDB, 2017, 31(23): 33-43.
[9] 王俊颜, 边晨, 肖汝诚, 马骉, 刘国平. 常温养护型超高性能混凝土的圆环约束收缩性能*[J]. CLDB, 2017, 31(23): 52-57.
[10] 季韬, 林晓溁, 梁咏宁, 陈宝春, 杨政险. 钢纤维对掺花岗岩石粉UHPC的增强增韧:磷酸锌改性和纤维形状的影响及机理*[J]. CLDB, 2017, 31(23): 66-72.
[11] 王倩楠, 顾春平, 孙伟. 水泥-粉煤灰-硅灰基超高性能混凝土水化过程微观结构的演变规律*[J]. CLDB, 2017, 31(23): 85-89.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[4] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[9] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[10] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed