Please wait a minute...
材料导报  2021, Vol. 35 Issue (23): 23192-23204    https://doi.org/10.11896/cldb.20110151
  高分子与聚合物基复合材料 |
黏土矿物基纳米复合阻燃材料的研究进展
解维闵1, 梁晓正1, 赵晓光1, 杨华明1,2,3
1 中南大学资源加工与生物工程学院,长沙 410083
2 中南大学矿物材料及其应用湖南省重点实验室,长沙 410083
3 中南大学建筑材料行业黏土矿物功能材料重点实验室,长沙 410083
Research Progress of Clay Mineral-based Nanocomposite Flame Retardants
XIE Weimin1, LIANG Xiaozheng1, ZHAO Xiaoguang1, YANG Huaming1,2,3
1 School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
2 Key Laboratory for Mineral Materials and Application of Hunan Province, Central South University, Changsha 410083, China
3 Key Laboratory of Clay Mineral Functional Materials in China Building Materials Industry, Central South University, Changsha 410083, China
下载:  全 文 ( PDF ) ( 10434KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 聚合物纳米复合材料因具有质轻、耐腐蚀、电绝缘、易于加工等优异的性能而被广泛应用于国民生产生活的各个领域。然而,大多数聚合物材料都极易燃烧,这严重限制了其在诸多领域中的实际应用。因此,增强聚合物的阻燃性能具有重大意义。近年来,随着人们的环保和健康意识日益增强,以环境友好的方法制备高强度、高韧性、高抗氧化性和良好阻燃性的聚合物复合材料的研究受到越来越多国内外研究者的青睐,高效绿色阻燃剂将具有巨大的市场潜力。纳米黏土是天然、无毒、低成本、可生物降解且具有生物相容性的材料,常被用于合成各种聚合物纳米复合材料,由于其较大的比表面积、阻隔性和热稳定性,可有效改善聚合物材料的阻燃性和力学性能。
本文总结了近几年天然黏土矿物增强聚合物纳米复合材料阻燃性和热稳定性的相关研究。根据不同来源,将聚合物材料分为天然聚合物材料和合成聚合物材料,分别探讨了添加黏土矿物对各种聚合物纳米复合材料阻燃性能的增强效果,并归纳了天然黏土矿物在聚合物纳米复合材料中的阻燃机理。与普通聚合物复合材料相比,天然黏土由于其独特的结构(纤维状、管状及层状),可以捕获易燃挥发物、阻隔热和质的传递。此外,天然黏土可以在聚合物表面形成强大的阻隔层,以延缓热和质的传输过程。最后,指出了目前纳米复合材料在阻燃研究中存在的问题。对当前文献的深入调查为实现聚合物/黏土纳米复合材料的高效利用提供有用的信息,并为设计新型高性能聚合物/黏土纳米复合材料提供理论指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
解维闵
梁晓正
赵晓光
杨华明
关键词:  阻燃材料  黏土矿物  聚合物复合材料  天然聚合物  合成聚合物    
Abstract: Polymer nanocomposites have been widely used in various fields of national production and life due to their excellent properties such as light weight, corrosion resistance, electrical insulation and easy processing. However, most polymer materials are extremely flammable, which seriously limits their practical application in many fields. Therefore, it is of great significance to enhance the flame retardant property of polymer. In recent years, with the increasing awareness of environmental protection and health, the preparation of polymer composites with high strength, high toughness, high oxidation resistance and good flame retardancy by environmentally friendly methods has been attracted more and more researchers at home and abroad. High-efficiency green flame retardants will have great market potential. Nanoclay is a natural, non-toxic, low-cost, biodegradable and biocompatible material, which is often used to synthesize polymer nanocomposites. Due to its high specific surface area, ba-rrier property and thermal stability, it can effectively improve the flame retardancy and mechanical properties of polymer materials.
This paper summarizes the related research on the flame retardant and thermal stability of natural clay minerals reinforced polymer nanocomposites in recent years. According to different sources, polymer materials can be divided into natural polymer materials and synthetic polymer materials. The enhancement effect of clay minerals on the flame retardant properties of various polymer nanocomposites is discussed respectively. The flame retardant mechanism of natural clay minerals in polymer nanocomposites is also summarized. Compared with common polymer composites, natural clay minerals in polymer composites can capture flammable volatiles, block the transfer of heat and mass due to its unique structure (fibrous, tubular and layered). In addition, natural clays can form a strong barrier layer on the polymer surface to delay the heat and mass transfer processes. Finally, it points out the current problems existing in the flame retardant research of nanocomposites. The in-depth investigation of the current literature provides useful information for the efficient utilization of polymer/clay nanocomposites and also provides theoretical guidance for the design of new high-performance polymer/clay nanocomposites.
Key words:  flame retardants    natural clay minerals    polymer nanocomposites    natural polymers    synthetic polymers
出版日期:  2021-12-10      发布日期:  2021-12-23
ZTFLH:  TD985  
基金资助: 国家重点研发计划 (2017YFB0310903);中南大学研究生自主探索创新项目(2020zzts728; 2019zzts887)
通讯作者:  hmyang@csu.edu.cn   
作者简介:  解维闵,2018年6月本科毕业于武汉工程大学矿物加工工程专业,获工学学士学位。现为中南大学资源加工与生物工程学院硕士研究生,在杨华明教授的指导下进行研究工作。目前主要研究领域为矿物功能材料。
杨华明,工学博士,中南大学教授、博士研究生导师,中组部国家“万人计划”领军人才、国家杰出青年科学基金获得者、国家中青年科技创新领军人才、湖南省科技领军人才、教育部新世纪优秀人才,享受国务院政府特殊津贴。现任中国建筑材料行业黏土矿物功能材料重点实验室主任、矿物材料及其应用湖南省重点实验室主任、湖南省矿物材料国际联合实验室(国际科技创新合作基地)主任。在中南工业大学获学士、硕士和博士学位,先后在英国布里斯托大学、澳大利亚昆士兰大学、俄罗斯科学院固态化学研究所任访问学者。长期从事矿物材料、能源与环境材料、生物医学材料、材料计算、固废资源化等研究,致力于材料、矿物、化学、物理、生物医学等多学科交叉,主持国家自然科学基金、国家科技支撑、863课题、973专题、博士点基金、教育部重点项目等,在Adv. Funct.Mater.、Chem. Mater.、Appl. Catal. B、J. Mater.Chem.、J. Phys. Chem.、ChemComm、Adv. Mater. Interface、Am. Mineral.、Clay Clay Miner.、Appl. Clay Sci. 等发表SCI论文180多篇(其中ESI高被引论文7篇,Nature指数论文5篇,封面和综述6篇),SCI引用5 000余次,授权专利32件,申请国际专利4件,撰写Elsevier著作1章、出版学术专著3部、教材3部,获省科技创新团队奖、省部级科技一等奖4项、二等奖2项和图书一等奖2项,获陈新民奖励基金优秀年轻教师奖、宝钢优秀教师奖、中国硅酸盐学会青年科技奖等。担任国际期刊Clay Minerals副主编、Minerals专辑客座编辑、《材料导报》编委、第22届国际矿物学大会矿物材料分会主席,兼任中国硅酸盐学会矿物材料分会副理事长、中国矿物岩石地球化学学会矿物岩石材料专委会副主任、中国非金属矿工业协会常务理事等。
引用本文:    
解维闵, 梁晓正, 赵晓光, 杨华明. 黏土矿物基纳米复合阻燃材料的研究进展[J]. 材料导报, 2021, 35(23): 23192-23204.
XIE Weimin, LIANG Xiaozheng, ZHAO Xiaoguang, YANG Huaming. Research Progress of Clay Mineral-based Nanocomposite Flame Retardants. Materials Reports, 2021, 35(23): 23192-23204.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20110151  或          http://www.mater-rep.com/CN/Y2021/V35/I23/23192
1 Attia N F, Hassan M A, Nour M A, et al. Polymer International, 2014, 63(7), 1168.
2 George J, Ishida H. Progress in Polymer Science, 2018, 86, 1.
3 Sanusi O M, Benelfellah A, Aït Hocine N. Applied Clay Science, 2020, 185, 105408.
4 Chen H B, Schiraldi D A. Polymer Reviews, 2019, 59(1), 1.
5 Attia N F, Goda E S, Nour M A, et al. Materials Chemistry and Physics, 2015, 168, 147.
6 Yu Z L, Yang N, Apostolopoulou-Kalkavoura V, et al. Angewandte Chemie International Edition, 2018, 57(17), 4538.
7 Xue M, Zhang X, Wu Z, et al. Journal of Applied Polymer Science, 2014, 131(2), 39772.
8 Hooshangi Z, Feghhi S A H, Sheikh N. Radiation Physics and Chemistry, 2015, 108, 54.
9 Vahabi H, Saeb M R, Formela K, et al. Progress in Organic Coatings, 2018, 119, 8.
10 Attia N F, Abd El-Aal N S, Hassan M A. Polymer Degradation and Stability, 2016, 126, 65.
11 Chen R S, Ahmad S. Materials Chemistry and Physics, 2017, 198, 57.
12 Dittrich B, Wartig K A, Hofmann D, et al. Polymers for Advanced Technologies, 2013, 24(10), 916.
13 Chen C, Zhao X, Shi C, et al. Journal of Materials Science, 2018, 53(8), 6053.
14 Zhao Q, Fu L, Jiang D, et al. Chemical Communications, 2018, 54(59), 8249.
15 Zhao Q, Fu L, Jiang D, et al. Communications Chemistry, 2019, 2(1), 11.
16 Jiang D, Liu Z, Fu L, et al. ACS Applied Materials & Interfaces, 2020, 12(8), 9872.
17 Peng K, Fu L, Ouyang J, et al. Advanced Functional Materials, 2016, 26(16), 2666.
18 Fu L, Yang H, Tang A, et al. Nano Research, 2017, 10(8), 2782.
19 Shi L, Gunasekaran S. Nanoscale Research Letters, 2008, 3(12), 491.
20 Zhao H B, Chen M, Chen H B. ACS Sustainable Chemistry & Enginee-ring, 2017, 5(8), 7012.
21 Vartiainen J, Tammelin T, Pere J, et al. Carbohydrate Polymers, 2010, 82(3), 989.
22 Prakash Maran J, Sivakumar V, Thirugnanasambandham K, et al. Carbohydrate Polymers, 2014, 101, 786.
23 Chen H B, Chiou B S, Wang Y Z, et al. ACS Applied Materials & Interfaces, 2013, 5(5), 1715.
24 Al-Homoud M S. Building and Environment, 2005, 40(3), 353.
25 Almeida J A, Oliveira A S, Rigoti E, et al. Applied Clay Science, 2019, 180, 105173.
26 Shan S, Tang H, Zhao Y, et al. Chemical Engineering Journal, 2019, 359, 779.
27 Shang K, Liao W, Wang J, et al. ACS Applied Materials & Interfaces, 2016, 8(1), 643.
28 Dove C A, Bradley F F, Patwardhan S V. Energy and Buildings, 2019, 184, 88.
29 Kuo C K, Ma P X. Biomaterials, 2001, 22(6), 511.
30 Liu H, Gu X, Hu M, et al. RSC Advances, 2014, 4(32), 16751.
31 Zhang J, Ji Q, Shen X, et al. Polymer Degradation and Stability, 2011, 96(5), 936.
32 Jin H, Zhou X, Xu T, et al. ACS Applied Materials & Interfaces, 2020, 12(10), 11815.
33 Gan W, Chen C, Wang Z, et al. Advanced Functional Materials, 2019, 29(14), 1807444.
34 Zhu H, Luo W, Ciesielski P N, et al. Chemical Reviews, 2016, 116(16), 9305.
35 Zhu M, Song J, Li T, et al. Advanced Materials, 2016, 28(26), 5181.
36 Guo B, Liu Y, Zhang Q, et al. ACS Applied Materials & Interfaces, 2017, 9(27), 23039.
37 Cubbage F, Mac Donagh P, Balmelli G, et al. New Zealand Journal of Forestry Science, 2014, 44(Suppl. 1), S7.
38 Kolibaba T J, Brehm J T, Grunlan J C. Green Materials, 2020, 8(3), 131.
39 Wang W, Zhu Y, Cao J. Materials & Design, 2014, 59, 233.
40 Fu Q, Medina L, Li Y, et al. ACS Applied Materials & Interfaces, 2017, 9(41), 36154.
41 Chen G, Chen C, Pei Y, et al. Chemical Engineering Journal, 2020, 383, 123109.
42 Wang J, Cheng Q, Lin L, et al. ACS Nano, 2014, 8(3), 2739.
43 El-Shafei A, Al-Shemy M, Abou-Okeil A. Carbohydrate Polymers, 2015, 118, 83.
44 Fang F, Zhang X, Meng Y, et al. Surface & Coatings Technology, 2015, 262, 9.
45 Vasiljevic J, Jerman I, Jaksa G, et al. Cellulose, 2015, 22(3), 1893.
46 Liu Y, Pan Y T, Wang X, et al. Chemical Engineering Journal, 2016, 294, 167.
47 Gao D, Li R, Lv B, et al. Composites Part B: Engineering, 2015, 77, 329.
48 Huang G, Yang J, Gao J, et al. Industrial & Engineering Chemistry Research, 2012, 51(38), 12355.
49 Choi K, Seo S, Kwon H, et al. Journal of Materials Science, 2018, 53(16), 11433.
50 Russo L, Battocchio C, Secchi V, et al. Langmuir, 2014, 30(5), 1336.
51 Haensch C, Hoeppener S, Schubert U S. Chemical Society Reviews, 2010, 39(6), 2323.
52 Wu P, Feldman A K, Nugent A K, et al. Angewandte Chemie-Internatio-nal Edition, 2004, 43(30), 3928.
53 Bao Y, Li X, Tang P, et al. Cellulose, 2019, 26(17), 9311.
54 Lavoine N, Bergstrom L. Journal of Materials Chemistry A, 2017, 5(31), 16105.
55 Farooq M, Sipponen M H, Seppala A, et al. ACS Applied Materials & Interfaces, 2018, 10(32), 27407.
56 Fan B, Chen S, Yao Q, et al. Materials, 2017, 10(3), 311.
57 Liu A, Medina L, Berglund L A. ACS Applied Materials & Interfaces, 2017, 9(7), 6453.
58 Aulin C, Johansson E, Wagberg L, et al. Biomacromolecules, 2010, 11(4), 872.
59 Gonzáloz del Campo M M, Darder M, Aranda P, et al. Advanced Functional Materials, 2018, 28(27), 1703048.
60 Ghanadpour M, Wicklein B, Carosio F, et al. Nanoscale, 2018, 10(8), 4085.
61 Gupta P, Bera M, Maji P K. Polymers for Advanced Technologies, 2017, 28(11), 1428.
62 Gupta P, Verma C, Maji P K. Journal of Supercritical Fluids, 2019, 152, 104537.
63 Zhang C, Wang J. Materials, 2018, 11(1), 41.
64 Liu X, Qin S, Li H, et al. Macromolecular Materials and Engineering, 2019, 304(2), 1800531.
65 Zhang G, Wang J. Journal of Physics and Chemistry of Solids, 2018, 115, 137.
66 Jeencham R, Suppakarn N, Jarukumjorn K. Composites Part B: Enginee-ring, 2014, 56, 249.
67 Li X, Zhao Z, Wang Y, et al. Chemical Engineering Journal, 2017, 324, 237.
68 Shao Z B, Deng C, Tan Y, et al. ACS Applied Materials & Interfaces, 2014, 6(10), 7363.
69 Qiu J, Zhang C, Wang B, et al. Nanotechnology, 2007, 18(27), 275708.
70 Yuan P, Tan D, Annabi-Bergaya F. Applied Clay Science, 2015, 112, 75.
71 Du M, Guo B, Liu M, et al. Polymer Journal, 2006, 38(11), 1198.
72 Jia Z, Luo Y, Guo B, et al. Polymer-Plastics Technology and Enginee-ring, 2009, 48(6), 607.
73 Chen S, Lu X, Wang T, et al. Journal of Polymer Research, 2015, 22(9).
74 Prashantha K, Lacrampe M F, Krawczak P. Express Polymer Letters, 2011, 5(4), 295.
75 Gibhardt D, Doblies A, Meyer L, et al. Fibers, 2019, 7(6), 55.
76 Wang N, Gao N, Jiang S, et al. Composites Part B: Engineering, 2011, 42(6), 1571.
77 Minkova L, Peneva Y, Tashev E, et al. Polymer Testing, 2009, 28(5), 528.
78 Jenifer A, Rasana N, Jayanarayanan K. Materials Research Express, 2018, 5(6),065308.
79 Zhang S, Tian Y, Gu X, et al. Polymer Composites, 2018, 39(2, SI), E891.
80 Sun W, Tang W, Gu X, et al. Journal of Applied Polymer Science, 2018, 135(29),46507.
81 Shang K, Ye D D, Kang A H, et al. Polymer, 2017, 131, 111.
82 Shang K, Liao W, Wang Y Z. Chinese Chemical Letters, 2018, 29(3), 433.
83 Alhassan S M, Qutubuddin S, Schiraldi D. Langmuir, 2010, 26(14), 12198.
84 Podsiadlo P, Kaushik A K, Arruda E M, et al. Science, 2007, 318(5847), 80.
85 Wang Y T, Zhao H B, Degracia K, et al. ACS Applied Materials & Interfaces, 2017, 9(48), 42258.
86 Lewin M. Polymers for Advanced Technologies, 2006, 17(9-10), 758.
87 Finlay K, Gawryla M D, Schiraldi D A. Industrial & Engineering Chemistry Research, 2008, 47(3), 615.
88 Medina L, Carosio F, Berglund L A. Composites Science and Technology, 2019, 182, 107762.
89 Chen H B, Liu B, Huang W, et al. ACS Applied Materials & Interfaces, 2014, 6(18), 16227.
90 Alongi J, Carosio F. 7-flame retardancy of flexible polyurethane foams: Traditional approaches versus layer-by-layer assemblies, Woodhead Publishing, U.K., 2017, pp. 171.
91 Ling Z, Wang G, Zhang M, et al. Nanoscale, 2015, 7(12), 5120.
92 Hassan M, Nour M, Abdelmonem Y, et al. Polymer Degradation and Stability, 2016, 133, 8.
93 Lazar S, Carosio F, Davesne A L, et al. ACS Applied Materials & Interfaces, 2018, 10(37), 31686.
94 Chen P, Zhao Y, Wang W, et al. Polymers, 2019, 11(2), 213.
95 Almasian A, Mirjalili M, Maleknia L, et al. Fibers and Polymers, 2019, 20(7),1387.
96 Younis A A. Egyptian Journal of Petroleum, 2016, 25(2),161.
97 Carosio F, Di Pierro A, Alongi J, et al. Journal of Colloid and Interface Science, 2018, 510,142.
98 Gianelli W, Camino G, Tabuani D, et al. Fire and Materials, 2006, 30(5),333.
99 Zong R, Hu Y, Liu N, et al. Journal of Applied Polymer Science, 2007, 104(4),2297.
100 Wentao he, Gao J, Liao S, et al. Composites Communications, 2019, 13,143.
101 Marney D C O, Russell L J, Wu D Y, et al. Polymer Degradation and Stability, 2008, 93(10),1971.
102 Boonkongkaew M, Sirisinha K. Journal of Materials Science, 2018, 53(14), 10181.
103 Wang S, Ma S, Xu C, et al. Macromolecules, 2017, 50(5),1892.
104 Bakhshandeh E, Jannesari A, Ranjbar Z, et al. Progress in Organic Coatings, 2014, 77(7),1169.
105 Rastin H, Saeb M R, Nonahal M, et al. Progress in Organic Coatings, 2017, 113,126.
106 Gillani Q F, Ahmad F, Mutalib M I A, et al. Chinese Journal of Polymer Science, 2018, 36(11),1286.
107 Zia-ul-Mustafa M, Ahmad F, Ullah S, et al. Progress in Organic Coatings, 2017, 102(B),201.
108 Goda E S, Yoon K R, El-sayed S H, et al. Thermochimica Acta, 2018, 669,173.
109 Dasari A, Yu Z Z, Cai G P, et al. Progress in Polymer Science, 2013, 38(9),1357.
110 Xie W, Chen H, He D, et al. Surface and Coatings Technology, 2019, 367,118.
111 Nielsen L E. Journal of Macromolecular Science Part A: Chemistry, 1967, 1(5),929.
112 Zanetti M, Bracco P, Costa L. Polymer Degradation and Stability, 2004, 85(1), 657.
113 Du J, Wang J, Su S, et al. Polymer Degradation and Stability, 2004, 83(1),29.
114 Lewin M. Fire and Materials, 2003, 27(1),1.
115 Kashiwagi T, Harris R H, Zhang X, et al. Polymer, 2004, 45(3),881.
116 Kashiwagi T, Du F M, Douglas J F, et al. Nature Materials, 2005, 4(12),928.
117 Chen G G, Guan Y, Qi X M, et al. Journal of Materials Engineering, 2015,43(8),104 (in Chinese).
陈阁谷,关莹,亓宪明, 等. 材料工程, 2015,43(8),104.
[1] 张凯, 桂泰江, 吴连锋, 郭莉莎, 郭灵敏. 导热绝缘聚合物复合材料的研究进展[J]. 材料导报, 2021, 35(Z1): 571-575.
[2] 卿艳红, 苏小丽, 王钺博, 周琴, 文科, 马灵涯, 陈情泽, 朱建喜. 蒙脱石黏土矿物环境材料构建的研究进展[J]. 材料导报, 2020, 34(19): 19018-19026.
[3] 任秦博,王景平,杨立,李翔,王学川. 用于电阻式柔性应变传感器的导电聚合物复合材料研究进展[J]. 材料导报, 2020, 34(1): 1080-1094.
[4] 董怀斌,李长青,邹霞辉. 电场诱导碳纳米管在聚合物中定向有序排列的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 427-433.
[5] 张耀君, 余淼, 张力, 张懿鑫, 康乐. 一种新型石墨烯-粉煤灰基地质聚合物复合材料的制备及光催化应用*[J]. CLDB, 2017, 31(9): 50-56.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed