Please wait a minute...
材料导报  2024, Vol. 38 Issue (5): 23070044-6    https://doi.org/10.11896/cldb.23070044
  特种工程材料 |
面芯脱粘缺陷对复合材料夹芯圆柱壳屈曲特性影响分析
陈悦1, 黄静1,*, 朱子旭2, 李华东2
1 中国人民解放军海军勤务学院,天津 300450
2 中国人民解放军海军工程大学,武汉 430033
Analysis of the Influence of Surface Core Debonding Defects on the Buckling Characteristics of Composite Cylindrical Shells
CHEN Yue1, HUANG Jing1,*, ZHU Zixu2, LI Huadong2
1 Naval Logistics Academy of PLA, Tianjin 300450, China
2 Naval University of Engineering of PLA, Wuhan 430033, China
下载:  全 文 ( PDF ) ( 6351KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 面芯脱粘是复合材料夹芯结构常见的损伤形式。本工作综合考虑面芯界面损伤演化、分层屈曲以及分层扩展的耦合作用,建立了深水静压载荷下复合材料夹芯圆柱壳极限承载能力预报方法。基于非线性极限载荷计算方法,通过预制初始缺陷,开展了含面芯脱粘缺陷复合材料夹芯圆柱壳屈曲特性分析,揭示了典型面芯脱粘缺陷对复合材料夹芯圆柱壳失效模式及极限承载的影响机理,得到不同面芯脱粘形式、脱粘尺寸、脱粘位置的影响规律。研究发现,随贯穿面芯脱粘长度增加,结构失效模式发生整体屈曲→混合屈曲→局部屈曲演化;外蒙皮/芯层面芯脱粘对含环向贯穿面芯脱粘复合材料夹芯圆柱壳极限承载敏感度更高,内蒙皮/芯层界面脱粘对含纵向贯穿面芯脱粘缺陷复合材料夹芯圆柱壳极限承载敏感度更高;对于多个局部圆形面芯脱粘,沿纵向分布越集中、沿环向分布越离散,结构极限承载损失率越高。研究成果对面芯脱粘缺陷复合材料夹芯圆柱壳的优化设计与可靠性评估具有很好的指导意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈悦
黄静
朱子旭
李华东
关键词:  复合材料  面芯脱粘  圆柱壳  屈曲  极限承载    
Abstract: Surface core debonding is a common damage type of composite sandwich structures. Considering the coupling effects of surface core interface damage evolution, layered buckling and layered extension, a method for predicting the ultimate bearing capacity of composite cylindrical shells under deep water static load was established. Based on the nonlinear ultimate load calculation method, the buckling characteristics of composite cylindrical shells with surface core disbonding defects were analyzed by prefabrication of initial defects, and the influence mechanism of typical surface core disbonding defects on the failure mode and bearing characteristics of composite cylindrical shells was revealed. The influence laws of different surface core disbonding types, disbonding sizes and disbonding positions were obtained. It is found that the failure mode of the structure evolves from global buckling to mixed buckling to local buckling with the increase of core disbonding length. The outer skin/core layer core stripping is more sensitive to the ultimate load bearing of the cylindrical shell with the core stripping of the annular through surface, and the inner skin/core layer interface stripping is more sensitive to the ultimate load bearing of the cylindrical shell with the core stripping of the longitudinal through surface. For multiple local circular core desticking, the more concentrated the longitudinal distribution and the more discrete the circumfe-rential distribution, the higher the structural ultimate load loss rate. The research results have a good guiding significance for the optimal design and reliability evaluation of cylindrical shells with surface core disbonding defects.
Key words:  composite material    face/core debond    cylindrical shell    buckling    ultimate load
出版日期:  2024-03-10      发布日期:  2024-03-18
ZTFLH:  TB332.1  
基金资助: 国防预研基金项目(9140A14080914JB11044);国家自然科学基金青年基金(5220110370)
通讯作者:  *黄静,毕业于天津大学环境工程与科学专业,副教授。长期从事国防工程管理及勤务保障方向的教学及科研工作,2018年列入海军第四批高新科技人才工程培养对象,取得国家水运工程造价工程师资质。近五年,主持负责军队后勤重点计划科研课题1项,主研军队级科研课题3项,主持完成海军级教育科研课题1项,主编完成海军级及学院级教材3部;主持负责的课题《战备工程自然生态复绿伪装技术应用研究》获得2015年度军队科技进步三等奖,获得发明及实用新型专利5项,公示4项;参研军队及海军后勤科研课题9项;发表学术论文10余篇。 huangjing197816@sina.com   
作者简介:  陈悦,博士毕业于中国人民解放军海军工程大学,现为中国人民解放军海军勤务学院讲师。长期从事军港工程及复合材料方向教学及科研工作。近五年,主持海军级课题3项,主研军队级、海军级课题3项,参研海军级以上课题11项,获全军军事职业教育精品微课1项,主持海军级在线课程1项、学院级课题3项,以第一作者发表学术论文15篇。
引用本文:    
陈悦, 黄静, 朱子旭, 李华东. 面芯脱粘缺陷对复合材料夹芯圆柱壳屈曲特性影响分析[J]. 材料导报, 2024, 38(5): 23070044-6.
CHEN Yue, HUANG Jing, ZHU Zixu, LI Huadong. Analysis of the Influence of Surface Core Debonding Defects on the Buckling Characteristics of Composite Cylindrical Shells. Materials Reports, 2024, 38(5): 23070044-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23070044  或          https://www.mater-rep.com/CN/Y2024/V38/I5/23070044
1 Tafreshi A, Bailey C G. Composite Structure, 2007, 80(1), 49.
2 El-sayed S, Sridharan S. International Journal of Fracture, 2002, 117(1), 63.
3 Zhu T. Numerical study of buckling and damage propagation of honeycomb sandwich structures with interfacial debonding. Mater's Thesis, Tianjin University, China, 2012(in Chinese).
朱涛. 含界面脱粘蜂窝夹芯结构的屈曲和损伤扩展数值研究. 硕士学位论文, 天津大学, 2012.
4 Pan S, Wang X F, Chen X F. Journal of Nanjing University of Aeronautics and Astronautics, 2019, 51(1), 35.
潘松, 王新峰, 陈晓烽. 南京航空航天大学学报, 2019, 51(1), 35.
5 Hao C Q. Study on ultimate bearing capacity of L-shaped joints of sandwich composites with damage. Mater's Thesis, Wuhan University of Technology, China, 2019(in Chinese).
郝传奇. 含有损伤的夹芯复合材料L型节点极限承载力研究. 硕士学位论文, 武汉理工大学, 2019.
6 Fu Y M, Yang J H. Applied Mathematics and Mechanics, 2007, 28(9), 1009(in Chinese).
傅衣铭, 杨金花. 应用数学和力学, 2007, 28(9), 1009.
7 Zhang H T. Study on delamination damage of composite laminates. Mater's Thesis, Civil Aviation University of China, China, 2009(in Chinese).
张焕铜. 复合材料层合壳脱层损伤研究. 硕士学位论文, 中国民航大学, 2009.
8 Moon C, Kim I H, Choi B H, et al. Composite Structure, 2010, 92, 2241.
9 Chen Y, Zhu X, Li H D, et al. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2016, 44(7), 40(in Chinese).
陈悦, 朱锡, 李华东, 等. 华中科技大学学报(自然科学版), 2016, 44(7), 40.
10 Chen Y, Zhu X, Li H D, et al. Journal of Naval University of Engineering, 2016(6), 65(in Chinese).
陈悦, 朱锡, 李华东, 等. 海军工程大学学报, 2016(6), 65.
11 Pan S D, Wu L Z, Sun Y G. Chinese Journal of Composite Materials, 2007(6), 121(in Chinese).
泮世东, 吴林志, 孙雨果. 复合材料学报, 2007(6), 121.
12 Yu F, Cheng J, Wang X, et al. Composite Materials Science and Engineering, 2021(1), 5(in Chinese).
余芬, 程吉, 王轩, 等. 复合材料科学与工程, 2021(1), 5.
13 Chen Y, Zhu Z X, Li Y Q, et al. Journal of Naval University of Engineering, 2018, 30(2), 83(in Chinese).
陈悦, 朱子旭, 李永清, 等. 海军工程大学学报, 2018, 30(2), 83.
[1] 于巧玲, 刘成宝, 郑磊之, 陈丰, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基纳米复合材料的合成及电化学传感性能研究[J]. 材料导报, 2025, 39(3): 23090112-11.
[2] 马润山, 王海燕, 张琦, 杨建新, 汤彬, 李睿, 李双寿, 林万明, 范晋平. MXene对锌-空气电池双金属催化剂催化性能的影响[J]. 材料导报, 2025, 39(2): 24020010-8.
[3] 冯妍, 葛淑慧, 隗立颖, 闫建华. 3D打印无机非金属材料增强柔性器件的研究进展[J]. 材料导报, 2025, 39(1): 23100077-12.
[4] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[5] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[6] 冯炜森, 杨成鹏, 贾斐. 复合材料层压板疲劳损伤演化模型的综述与评估[J]. 材料导报, 2024, 38(9): 22100058-11.
[7] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[8] 陆奔, 李安敏, 杨树靖, 袁子豪, 惠佳琪. 磁性镓基液态金属复合材料的研究进展[J]. 材料导报, 2024, 38(8): 22090217-15.
[9] 张雨, 李瑜婧, 万里强, 黄发荣, 刘坐镇. 聚三唑树脂/氮化硼纳米片复合材料的制备与性能[J]. 材料导报, 2024, 38(8): 22100089-8.
[10] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[11] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[12] 郑孝源, 任志英, 吴乙万, 白鸿柏, 黄健萌, 谭桂斌. 金属橡胶-聚氨酯复合材料减振性能研究[J]. 材料导报, 2024, 38(6): 22050144-7.
[13] 马超, 解帅, 王永超, 冀志江, 吴子豪, 王静. 用于红外和雷达波隐身的水泥基复合材料[J]. 材料导报, 2024, 38(5): 23080165-9.
[14] 柯松, 陈卓坤, 艾诚, 李尧, 虢婷, 孙志平. 非晶合金薄膜的复合强韧化研究进展[J]. 材料导报, 2024, 38(5): 22090022-9.
[15] 佘欢, 时磊, 董安平. 钛基石墨烯复合材料的分散性、界面结构及力学性能[J]. 材料导报, 2024, 38(5): 23030202-8.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed