Please wait a minute...
材料导报  2024, Vol. 38 Issue (13): 23010024-7    https://doi.org/10.11896/cldb.23010024
  无机非金属及其复合材料 |
微生物加固粉土的强度特性及加固机理研究
彭丽云1,2, 陈星1, 齐吉琳1,2,*, 朱同宇3
1 北京建筑大学土木与交通工程学院,北京 100044
2 城市交通基础设施建设北京市国际科技合作基地,北京 100044
3 山东轨道交通勘察设计院有限公司,济南 250101
Study on Strength Characteristics and Strengthening Mechanism of Microbial Reinforced Silt
PENG Liyun1,2, CHEN Xing1, QI Jilin1,2,*, ZHU Tongyu3
1 School of Civil and Traffic Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
2 Beijing International Science and Technology Cooperation Base of Urban Transportation Infrastructure Construction, Beijing 100044, China
3 Shandong Rail Transit Survey and Design Institute Co., Ltd., Jinan 250101, China
下载:  全 文 ( PDF ) ( 19994KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对华北地区广泛分布的黄河冲积粉土级配差、强度低的问题,采用微生物诱导碳酸钙沉淀(MICP)技术对其进行加固。通过三轴试验研究加固粉土的强度特性,通过微观结构测试分析其微观机理;结合宏观现象和微观机理揭示强度加固机理。结果表明:MICP加固后粉土的强度得到了大幅提升;其黏聚力和内摩擦角均随加固轮数、胶结液浓度的增加而增大,且增长速率呈现出先快后慢的趋势;在胶结液浓度为0.5 mol/L、加固两轮时加固效率更高。就微观结构而言,土样中的孔隙随胶结液浓度和加固轮数的增大而逐渐减少;土样截面的平均非孔隙面积比随加固轮数、胶结液浓度的增加而增大;黏聚力、内摩擦角与平均非孔隙面积比之间均符合先快后慢的双线性增加关系。黏聚力与内摩擦角提升原因在于MICP加固生成的碳酸钙通过粘结粉土颗粒,填充堵塞颗粒间孔隙,使平均非孔隙面积比增大,进而提升土体强度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
彭丽云
陈星
齐吉琳
朱同宇
关键词:  微生物诱导碳酸钙沉淀(MICP)  黏聚力  内摩擦角  平均非孔隙面积比  加固机理    
Abstract: The microbial induced calcium carbonate precipitation (MICP) technology was used to strengthen the widely distributed Yellow River alluvial silt in North China for its poor grading and weak strength. The strength characteristics of MICP-reinforced silt were analyzed by triaxial tests;the microscopic mechanism was analyzed by microstructure tests;the macroscopic phenomenon combined with the microscopic mechanism revealed the strength reinforcement mechanism. The results showed that the strength of silt was greatly improved after MICP reinforcement;its cohesion and internal friction angle increased with the increase of the number of reinforcement rounds and cement concentration, and the growth rate showed a trend of faster and then slower;the reinforcement efficiency was higher at the cement concentration of 0.5 mol/L and two rounds of reinforcement. In terms of microstructure, the pores in the soil sample gradually decreased with the increase of cement concentration and the number of reinforcement rounds;the average non-porous area ratio of the soil sample cross-section increased with the increase of the number of reinforcement rounds and cement concentration;the cohesion, internal friction angle and the average non-porous area ratio all conformed to the bilinear increasing relationship of fast and then slow. The reason for the increase in cohesion and internal friction angle is that the calcium carbonate produced by the MICP reinforcement increases the average non-porous area ratio by binding the soil particles and filling and blocking the inter-particle pores, thus increasing the strength of the soil.
Key words:  microbial induced calcite precipitation (MICP)    cohesive force    internal friction angle    average non-pore area ratio    strengthening mechanism
出版日期:  2024-07-10      发布日期:  2024-08-01
ZTFLH:  TU411  
基金资助: 国家自然科学基金(42172299;41972279)
通讯作者:  *齐吉琳,北京建筑大学土木与交通工程学院二级教授、博士研究生导师。1992年兰州大学水文地质与工程地质学专业本科毕业,1995年中国地震局兰州地震研究所地震地质学专业硕士毕业、1999年西安理工大学岩土工程学专业博士毕业。目前主要从事寒区岩土工程和特殊土力学等方面的研究。发表论文120余篇,包括Acta Geotechnica、Engineering Geology、Cold Regions Science and Technology、《岩土工程学报》《岩土力学》《岩石力学与工程学报》和《冰川冻土》等,SCI引用1 100余次,H因子为20。jilinqi@bucea.edu.cn   
作者简介:  彭丽云,北京建筑大学土木与交通工程学院教授、博士研究生导师。2004年7月、2008年10月于北京交通大学获得工学学士学位和博士学位。目前主要从事特殊土力学、土体加固改良技术和城市地下工程风险分析与评估等方面的研究。发表论文30余篇,包括Construction and Building Material、《岩土工程学报》《岩土力学》《冰川冻土》,授权专利4项,出版专著2部。
引用本文:    
彭丽云, 陈星, 齐吉琳, 朱同宇. 微生物加固粉土的强度特性及加固机理研究[J]. 材料导报, 2024, 38(13): 23010024-7.
PENG Liyun, CHEN Xing, QI Jilin, ZHU Tongyu. Study on Strength Characteristics and Strengthening Mechanism of Microbial Reinforced Silt. Materials Reports, 2024, 38(13): 23010024-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23010024  或          http://www.mater-rep.com/CN/Y2024/V38/I13/23010024
1 Jia Z X, Zhu H B, Shang Q S, et al. Journal of Highway and Transportation Research and Development, 2008, 25(9), 52(in Chinese).
贾朝霞, 朱海波, 商庆森, 等. 公路交通科技, 2008, 25(9), 52.
2 Song X G, Zhang H B, Wang S G, et al. Chinese Journal of Geotechnical Engineering, 2010, 32(10), 1594(in Chinese).
宋修广, 张宏博, 王松根, 等. 岩土工程学报, 2010, 32(10), 1594.
3 Ministry of Transport of the People's Republic of China. Technical Specifications for Construction of Highway Subgrades, JTG3610-2019. China Communications Press, China, 2019, pp.17 (in Chinese).
中华人民共和国交通运输部. 公路路基施工技术规范:JTG3610-2019. 人民交通出版社, 2019, pp.17.
4 Peng L Y, Liu J K, Xiao J H, et al. Journal of Beijing Jiaotong University, 2007, 31(4), 56(in Chinese).
彭丽云, 刘建坤, 肖军华, 等. 北京交通大学学报, 2007, 31(4), 56.
5 Wu K, Ma M Y, Ma G L. Journal of Jiangsu University (Natural Science Edition), 2011, 32(1), 107(in Chinese).
武科, 马明月, 马国梁. 江苏大学学报(自然科学版) , 2011, 32(1), 107.
6 Song X G, Li J, Yu Y F, et al. Journal of Architecture and Civil Engineering, 2017, 34(2), 41(in Chinese).
宋修广, 李进, 于一凡, 等. 建筑科学与工程学报, 2017, 34(2), 41.
7 Ren J C. Investigation and prevention countermeasures of subgrade and pavement diseases in silty soil. Master's Thesis, Shandong University, China, 2006 (in Chinese).
任继仓. 粉土地区路基路面病害调查与防治对策研究. 硕士学位论文, 山东大学, 2006.
8 Zhang D B. Science & Technology Information, 2013, 13(1), 364 (in Chinese).
张多斌. 科技信息, 2013, 13(1), 364.
9 Li Z X, Wang X C, Xue H. Journal of Highway and Transportation Research and Development, 2008, 25(2), 40(in Chinese).
李振霞, 王选仓, 薛晖. 公路交通科技, 2008, 25(2), 40.
10 Wang J Y, Peng L Y. Journal of Beijing University of Civil Engineering and Architecture, 2015, 31(3), 33(in Chinese).
王剑烨, 彭丽云. 北京建筑大学学报, 2015, 31(3), 33.
11 Khattak M J, Alrashidi M. International Journal of Pavement Enginee-ring, 2006, 7(1), 53.
12 Zhang L J, Li Y, Liu H H. Subgrade Engineering, 2016(6), 125(in Chinese).
张丽娟, 李渊, 刘洪辉. 路基工程, 2016(6), 125.
13 Xu P Q, Chen F B, Li Q Q, et al. Materials Reports, 2020, 34(3), 06095(in Chinese).
徐培蓁, 陈发滨, 李泉荃, 等. 材料导报, 2020, 34(3), 06095.
14 Qian C X, Feng J H, Su Y L. Materials Reports, 2019, 33(6), 1983(in Chinese).
钱春香, 冯建航, 苏依林. 材料导报, 2019, 33(6), 1983.
15 Xu J, Tang Y H, Wang X Z. Materials Reports, 2021, 35(22), 22039(in Chinese).
徐晶, 唐一洪, 王先志. 材料导报, 2021, 35(22), 22039.
16 Qabany A A, Soga K, Santamarina C. Journal of Geotechnical & Geoenvironmental Engineering, 2011, 138(8), 992.
17 Ding X C, Chen Y M, Zhang X L. Journal of Zhejiang University (Engineering Science), 2020, 54(9), 1690(in Chinese).
丁绚晨, 陈育民, 张鑫磊. 浙江大学学报(工学版), 2020, 54(9), 1690.
18 Cheng X H, Ma Q, Yang Z, et al. Chinese Journal of Geotechnical Engineering, 2013, 35(8), 1486(in Chinese).
程晓辉, 麻强, 杨钻, 等. 岩土工程学报, 2013, 35(8), 1486.
19 Fu J J, Jiang P M, Zong G, et al. Yangtze River, 2021, 52(1), 167(in Chinese).
付佳佳, 姜朋明, 纵岗, 等. 人民长江, 2021, 52(1), 167.
20 Xiao Z Y, Cheng L Q, Ge F, et al. Journal of North China University of Water Resources and Electric Power ( Natural Science Edition) , 2019, 40(3), 94(in Chinese).
肖志阳, 程留全, 葛飞, 等. 华北水利水电大学学报(自然科学版 ), 2019, 40(3), 94.
21 Zhao Z F, Peng B Y, Shao G H. Journal of Southeast University (Natural Science Edition), 2021, 51(3), 456(in Chinese).
赵志峰, 彭邦阳, 邵光辉. 东南大学学报(自然科学版 ) , 2021, 51(3), 456.
22 Ministry of Transport of the People's Republic of China. Test methods of soils for highway engineering:JTG 3430-2020, China Communications Press, China, 2020, pp.200(in Chinese).
中华人民共和国交通运输部. 公路土工试验规程: JTG 3430-2020, 人民交通出版社, 2020, pp.200.
23 Rebata Landa V. Microbial activity in sediments: effects on soil behavior. Ph. D. Thesis, Georgia Institute of Technology, USA, 2007.
24 Shao G H, Hou M, Liu P. Journal of Forestry Engineering, 2019, 4(1), 128(in Chinese).
邵光辉, 侯敏, 刘鹏. 林业工程学报, 2019, 4(1), 128.
25 Sun X H, Miao L C, Tong T Z, et al. Rock and Soil Mechanics, 2017, 38(11), 3225(in Chinese).
孙潇昊, 缪林昌, 童天志, 等. 岩土力学, 2017, 38(11), 3225.
26 Peng L Y, Li C C, Liu M J, et al. Hydrogeology & Engineering Geology, 2021, 48(1), 171.
彭丽云, 李朝成, 刘铭杰, 等. 水文地质工程地质, 2021, 48(1), 171.
27 Kumar A, Walia B S, Mohan J. Construction and Building Materials, 2006, 20(10), 1063.
[1] 李建东, 张延杰, 王旭, 蒋代军, 王兴为. 新型固化剂加固膨胀土研究现状及展望[J]. 材料导报, 2023, 37(5): 21030148-11.
[2] 钟玉健, 张晓超, 袁锐, 吴学敏, 陈林万. 非钙基土壤固化剂加固机理及其应用性能研究进展[J]. 材料导报, 2022, 36(14): 20110066-9.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed