Please wait a minute...
材料导报  2024, Vol. 38 Issue (6): 22080238-13    https://doi.org/10.11896/cldb.22080238
  无机非金属及其复合材料 |
热电器件界面性能的研究现状
长俊钢, 陈玉, 何静, 梁奇银, 雷晓波, 蔡芳共*, 张勤勇
西华大学材料科学与工程学院,成都 610036
Research Status of Interface Properties of Thermoelectric Devices
CHANG Jungang, CHEN Yu, HE Jing, LIANG Qiyin, LEI Xiaobo, CAI Fanggong*, ZHANG Qinyong
School of Materials Science and Engineering, Xihua University, Chengdu 610036, China
下载:  全 文 ( PDF ) ( 20297KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,基于塞贝克效应的热电技术不断取得进展,热电器件已在多个领域得以运用。然而热电器件的各连接界面存在诸多挑战。尤其是热电材料与电极的界面处在实际运用中面临电阻、热阻高,接头处易老化失效等问题。这使得热电器件的转化效率远低于理论值,可靠性不足以支持其工业化运用,热电材料的器件化进程严重滞后于新型热电材料的开发进度。为此,本文重点归纳总结了热电器件中热电材料与电极连接界面的电传输、热传输、连接性能的评估指标及相关理论,并详细介绍了各指标的测定方法和一些常见的优化策略,以期扩展热电器件的界面研究,提升热电器件的综合性能,扩大热电器件的应用范围。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
长俊钢
陈玉
何静
梁奇银
雷晓波
蔡芳共
张勤勇
关键词:  热电器件  接触电阻  界面热阻  电极  连接  测量    
Abstract: In recent years, the thermoelectric technology based on Seebeck effect has made continuous progress, and thermoelectric devices have been applied in many fields. However, there are many challenges in the interface of thermoelectric devices. In particular, the interface between thermoelectric materials and electrodes is faced with problems such as high electrical and thermal resistance, and easy aging failure at the joint in practical application. This makes the conversion efficiency of thermoelectric devices much lower than the theoretical value, and the reliability is not enough to support industrial application. The device application of thermoelectric materials lags behind the development of new thermoelectric materials. To this end, this paper mainly summarizes the evaluation indexes and related theories of electric transmission, heat transmission and connection performance of the interface between the thermoelectric materials and the electrode in the thermoelectric devices, and introduces the measurement methods of each index and some common optimization strategies in detail. In this way, the interface research of thermoelectric devices can be expanded. This will help to improve the comprehensive performance of thermoelectric devices, and thus make them more widely used.
Key words:  thermoelectric device    contact resistance    interfacial thermal resistance    electrode    connection    measurement
出版日期:  2024-03-25      发布日期:  2024-04-07
ZTFLH:  TN37  
基金资助: 大学生创新创业训练计划-国家级创新训练项目(202210623030);西华大学“西华杯”大学生创新创业项目-登峰计划(XHB2022065)
通讯作者:  *蔡芳共,西华大学材料科学与工程学院副教授、硕士研究生导师。2008年西南交通大学材料科学与工程专业本科毕业,2013年西南交通大学材料学专业博士毕业后到西部超导材料科技股份有限公司从事博士后研究,2016年11月至今任教于西华大学。目前主要从事热电材料与器件、光伏材料及电池等相关研究,发表论文50余篇,包括Chemistry of Materials、Materials Today Physics等。   
作者简介:  长俊钢,2017年6月于西南石油大学获得工学学士学位。现为西华大学材料与化工专业硕士研究生,在蔡芳共教授的指导下进行研究。目前主要研究领域为新能源材料。
引用本文:    
长俊钢, 陈玉, 何静, 梁奇银, 雷晓波, 蔡芳共, 张勤勇. 热电器件界面性能的研究现状[J]. 材料导报, 2024, 38(6): 22080238-13.
CHANG Jungang, CHEN Yu, HE Jing, LIANG Qiyin, LEI Xiaobo, CAI Fanggong, ZHANG Qinyong. Research Status of Interface Properties of Thermoelectric Devices. Materials Reports, 2024, 38(6): 22080238-13.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22080238  或          http://www.mater-rep.com/CN/Y2024/V38/I6/22080238
1 Liu W S, Bai S Q. Journal of Materiomics, 2019, 5(3), 321.
2 Zhao J W, Xu W, Kuang Z F, et al. Energy Conversion and Management, 2021, 247, 114754.
3 Ren Z F, Lan Y C, Zhang Q Y, et al. Advanced thermoelectrics: materials, contacts, devices, and systems, CRC Press, US, 2017, pp. 617.
4 Beltrán-Pitarch B, Maassen J, García-Cañadas J. Applied Energy, 2021, 299, 117287.
5 Berger H H. Journal of the Electrochemical Society, 1972, 119(4), 507.
6 He Y P, Léonard F, Spataru C D. Physical Review Materials, 2018, 2(6), 065401.
7 Wais M, Held K, Battiato M. Physical Review Materials, 2018, 2, 045402.
8 Vikhor L M, Anatychuk L I, Gorskyi P V. Journal of Applied Physics, 2019, 126(16), 164503.
9 Liu W S, Jie Q, Kim H S, et al. Acta Materialia, 2015, 87, 357.
10 Padovani F A, Stratton R. Solid-State Electronics, 1966, 9(7), 695.
11 Okumura H, Martin D, Grandjean D. Applied Physics Letters, 2016, 109(25), 252101.
12 Li H, Cheng M, Wang P, et al. Advanced Materials, 2022, 34(18), 2200885.
13 Song S, Liang Z, Xu C, et al. Soft Science, 2022, 2(3), 13.
14 Liu W S, Wang H Z, Wang L J, et al. Journal of Materials Chemistry A, 2013, 1(42), 13093.
15 Feng H B, Zhang L X, Zhang J L, et al. Materials, 2020, 13(5), 1130.
16 Trivedi V, Battabyal M, Murty B S, et al. Ceramics International, 2022, 48(19), 29175.
17 Yu C C, Wu H J, Agne M T, et al. APL Materials, 2019, 7(1), 013001.
18 Yin L, Chen C, Zhang F, et al. Acta Materialia, 2020, 198, 25.
19 Thimont Y, Lognoné Q, Goupil C, et al. Journal of Electronic Materials, 2014, 43(6), 2023.
20 Singh A, Bhattacharya S, Thinaharan C, et al. Journal of Physics D: Applied Physics, 2009, 42(1), 015502.
21 Feng S P, Chang Y H, Yang J, et al. Physical Chemistry Chemical Phy-sics, 2013, 15(18), 6757.
22 Li J Q, Zhao S Y, Chen J L, et al. ACS Applied Materials & Interfaces, 2020, 12(16), 18562.
23 Shen J J, Wang Z Y, Chu J, et al. ACS Applied Materials & Interfaces, 2019, 11(15), 14182.
24 Kim Y, Jin Y, Yoon G, et al. Journal of Materials Science & Technology, 2019, 35(5), 711.
25 Jourdon J, Lhostis S, Moreau S, et al. IEEE Transactions on Electron Devices, 2019, 66(6), 2699.
26 Loh W M, Swirhun S E, Crabbe E, et al. IEEE Electron Device Letters, 1985, 6(9), 441.
27 Marlow G S, Das M B. Solid-State Electronics, 1982, 25(2), 91.
28 Yang C X, Sun L Z, Brandt R E, et al. Journal of Applied Physics, 2017, 122(4), 045303.
29 Wang C H, Hsieh H C, Sun Z W, et al. ACS Applied Materials & Interfaces, 2020, 12(24), 27001.
30 Mengali O J, Seiler M R. Advanced Energy Conversion, 1962, 2, 59.
31 Ebling D, Bartholomé K, Bartel M, et al. Journal of Electronic Mate-rials, 2010, 39, 1376.
32 Ziolkowski P, Karpinski G, Dasgupta T, et al. Physica Status Solidi (A), 2013, 210, 89.
33 Thimont Y, Lognoné Q, Goupil C, et al. Journal of Electronic Materials, 2014, 43(6), 2023.
34 Kim Y, Yoon G, Park H S. Experimental Mechanics, 2016, 56(5), 861.
35 Kim Y, Song J, Yoon G, et al. Journal of Materials Science: Materials in Electronics, 2019, 30(15), 14112.
36 de Boor J, Gloanec C, Kolb H, et al. Journal of Alloys and Compounds, 2015, 632, 348.
37 Gupta R P, McCarty R, Sharp J. Journal of Electronic Materials, 2014, 43(6), 1608.
38 Hu X K, Liu X X, Guo Z T, et al. Review of Scientific Instruments, 2021, 92(2), 025110.
39 Swartz E T, Pohl R O. Reviews of Modern Physics, 1989, 61(3), 605.
40 Jin Z H. Physica Status Solidi (B), 2021, 258, 2000443.
41 Pei Q X, Guo J Y, Suwardi A, et al. Materials Today Physics, 2023, 30, 100953.
42 Cai Y H, Li P, Zhai P C, et al. Journal of Wuhan University of Techno-logy, 2009, 31(23), 27(in Chinese).
蔡永华, 李鹏, 翟鹏程, 等. 武汉理工大学学报, 2009, 31(23), 27.
43 Little W A. Canadian Journal of Physics, 1950, 37(3), 334.
44 Matsumoto D S, Reynolds C L, Anderson A C. Physical Review B, 1977, 16(8), 3303.
45 Costescu R M, Wall M A, Cahill D G. Physical Review B, 2003, 67(5), 054302.
46 Freedman J P, Yu X, Davis R F, et al. Physical Review B, 2016, 93(3), 035309.
47 Majumdar A. Journal of Heat Transfer, 1993, 115(1), 7.
48 Loh G C, Tay B K, Teo E H T. Applied Physics Letters, 2010, 97, 121917.
49 Khvesyuk V I, Liu B, Barinov A A. Journal of Physics: Conference Series, 2019, 1382, 012155.
50 Subramanyan H, Kim K, Lu T, et al. AIP Advances, 2019, 9(11), 115116.
51 Zhang Y Y, Ma D K, Zang Y, et al. Frontiers in Energy Research, 2018, 6, 48.
52 Saiz F, Karaaslan Y, Rurali R, et al. Journal of Applied Physics, 2021, 129(15), 155105.
53 Grochola G, Russo S P, Snook I K. The Journal of Chemical Physics, 2005, 123(20), 204719.
54 Phelan P E. Journal of Heat Transfer, 1998, 120, 37.
55 Liu D H, Luo Y, Shang X C. International Journal of Heat and Mass Transfer, 2015, 80, 407.
56 Wang Z, Yang J, Wang S, et al. Rare Metal Materials and Engineering, 2013, 42(8), 1572.
57 Sponagle B, Groulx D. Applied Thermal Engineering, 2016, 96, 671.
58 Zhang G, Liu C H, Fan S S. ACS Nano, 2012, 6(4), 3057.
59 Pan X S, Cui X Y, Liu S S, et al. Journal of Low Temperature Physics, 2020, 201, 213.
60 Chen J, Xu X F, Zhou J, et al. Reviews of Modern Physics, 2022, 94(2), 025002.
61 Ohsone Y, Wu G, Dryden J, et al. Journal of Heat Transfer, 1999, 121(4), 954.
62 Fieberg C, Kneer R. International Journal of Heat and Mass Transfer, 2008, 51(5), 1017.
63 Zhang P, Xuan Y M, Li Q. Experimental Thermal and Fluid Science, 2014, 54, 204.
64 Xian Y Q, Zhang P, Zhai S P, et al. Applied Thermal Engineering, 2018, 130, 1530.
65 Borca-Tasciuc T, Kumar A R, Chen G. Review of Scientific Instruments, 2001, 72(4), 2139.
66 Luo H Z, Chen Y X, Sun P F, et al. IEEE Transactions on Power Electronics, 2016, 31(7), 5112.
67 Gao S, Ngo K D T, Lu G Q. IEEE Transactions on Industrial Electronics, 2021, 68(5), 4448.
68 Kim D H, Kim C, Kim J T, et al. Measurement, 2018, 129, 281.
69 Ren X, Gou J, Dai Y, et al. International Communications in Heat and Mass Transfer, 2022, 136, 106182.
70 Cui J L, Zhao X B, Zhao W M, et al. Materials Science and Enginee-ring: B, 2002, 94, 223.
71 Zhang A B, Wang B L. International Journal of Thermal Sciences, 2016, 104, 396.
72 Kim Y, Yoon G, Cho B J, et al. Applied Sciences, 2017, 7, 1116.
73 Ziabari A, Suhir E, Shakouri A. Microelectronics Journal, 2014, 45(5), 547.
74 Bao X, Hou S H, Wu Z X, et al. Journal of Materials Science & Techno-logy, 2023, 148, 64.
75 Zhu Y K, Wu P , Guo J, et al. Ceramics International, 2020, 46(10), 14994.
76 Zhang C, Geng X J, Chen B, et al. Small, 2021, 17(42), 2104067.
77 Suwardi A, Lim S H, Zheng Y, et al. Journal of Materials Chemistry C, 2020, 8(47), 16940.
78 Radhakrishnan R. Materials and Manufacturing Processes, 2008, 23(6), 626.
79 Dolzhnikov D S, Zhang H, Jang J, et al. Acta Materialia, 2015, 347(6220), 425.
80 Malik S A, Hung L T, Nong N V. Materials Today Energy, 2017, 5, 305.
81 Wang X, Wang H C, Su W B, et al. Renewable Energy, 2019, 131, 606.
82 El-Genk M S, Saber H H, Caillat T, et al. Energy Conversion and Ma-nagement, 2006, 47(2), 174.
83 Chen L Q, Mei D Q, Wang Y C, et al. Journal of Alloys and Compounds, 2019, 796, 314.
84 Romano L, Comamala J V. Materials Science in Semiconductor Proces-sing, 2019, 92, 1.
85 Kim Y, Lee H S, Yoon G, et al. ACS Applied Energy Materials, 2020, 3(3), 2989.
86 Wang Z Y, Fu C G, Xia K Y, et al. ACS Applied Materials & Interfaces, 2021, 13(6), 7317.
87 Nozariasbmarz A, Saparamadu U, Li W, et al. Journal of Power Sources, 2021, 493, 229695.
88 Zhang B, Zheng T, Wang Q X, et al. Scripta Materialia, 2018, 152, 36.
89 Chen S P, Wang Y C, Wang Y N, et al. Journal of Alloys and Compounds, 2022, 905, 164267.
90 Pham N H, Farahi N, Kamila H, et al. Materials Today Energy, 2019, 11, 97.
91 Orr B, Akbarzadeh A, Mochizuki M, et al. Applied Thermal Enginee-ring, 2016, 101, 490.
92 Motiei P, Yaghoubi M, GoshtashbiRad E, et al. Renewable Energy, 2018, 119, 551.
93 Barako M T, Park W, Marconnet A M, et al. Journal of Electronic Materials, 2013, 42(3), 372.
94 Merienne R, Lynn J, McSweeney E, et al. Applied Energy, 2019, 237, 671.
95 Xuan X C, Ng K C, Yap C, et al. International Journal of Heat and Mass Transfer, 2002, 45(26), 5159.
96 Wang P, Li J E, Wang B L, et al. Journal of Power Sources, 2019, 437, 226861
97 Wang P, Wang B L. International Journal of Engineering Science, 2017, 119, 93.
98 Wu S C, Zhang S Q, Xu Z W. International Journal of Fatigue, 2016, 87, 359.
[1] 彭鹏, 邵宇鹰, 胡海敏, 李振明, 刘伟. 基于碲化铋基柔性热电器件的自取能温度传感器结构设计及性能研究[J]. 材料导报, 2024, 38(6): 22080105-5.
[2] 杨简, 李洋, 陈宝春, 徐港, 黄卿维. UHPC直拉试验方法与本构关系研究[J]. 材料导报, 2024, 38(6): 22110263-9.
[3] 贾宝惠, 任鹏, 宋挺, 崔开心, 肖海建. 湿热环境下端径比对复合材料螺栓连接结构静力拉伸失效的影响[J]. 材料导报, 2024, 38(5): 22100282-7.
[4] 刘继成, 杨仁凯, 陈贵生, 孙思, 韩晓宇, 田洁, 李晓林. 改性PbO2电极电化学催化裂解的稳定性研究[J]. 材料导报, 2023, 37(8): 21080035-6.
[5] 蔡成林, 李泽贤, 印峰. 维氏硬度试验中的视觉检测算法研究综述[J]. 材料导报, 2023, 37(8): 21070036-10.
[6] 王赫, 胡程文, 王洪杰, 阮芳涛, 储长流. 废弃复材树脂高值化利用:超级电容器电极应用[J]. 材料导报, 2023, 37(6): 21090103-5.
[7] 江志威, 刘呈坤, 吴红, 毛雪. 静电纺柔性超级电容器电极材料的研究进展[J]. 材料导报, 2023, 37(5): 21040283-13.
[8] 史雪飞, 杨正海, 张永振. 系统弹性对载流摩擦副无电条件下摩擦磨损性能的影响[J]. 材料导报, 2023, 37(5): 21080045-5.
[9] 白小杰, 宋生南, 卓祖优, 刘海雄, 陈燕丹. 丝瓜络基3D多级孔结构掺氮活性炭的制备及储能特性[J]. 材料导报, 2023, 37(5): 21080011-7.
[10] 王畅, 李安敏, 王晓东. 金属液测速技术的原理及研究进展[J]. 材料导报, 2023, 37(4): 21020076-7.
[11] 刘洋, 庄蔚敏. 金属-聚合物及金属-复合材料薄壁结构压印连接技术的研究进展[J]. 材料导报, 2023, 37(3): 21110241-12.
[12] 乔瑞林, 龙伟民, 钟素娟, 廖志谦, 樊喜刚, 魏永强. 原位反应在钎焊中的应用[J]. 材料导报, 2023, 37(23): 22060183-8.
[13] 寇杰, 马东旭, 郑勇. 基于丝束电极技术的电偶腐蚀研究进展[J]. 材料导报, 2023, 37(23): 22040352-9.
[14] 陈晨, 张亮, 王曦, 李木兰. Zn-Al系钎焊材料的研究进展[J]. 材料导报, 2023, 37(22): 22010081-13.
[15] 吴嘉伦, 夏敏, 王军峰, 葛昌纯. 电极感应熔炼气雾化法制备粉末冶金增材制造原材料金属粉末的研究综述[J]. 材料导报, 2023, 37(21): 22040132-8.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed