Please wait a minute...
材料导报  2024, Vol. 38 Issue (16): 23030298-5    https://doi.org/10.11896/cldb.23030298
  金属与金属基复合材料 |
接触面积对H62/T2弹性接触载流摩擦副性能的影响
焦金隆1,2, 杨正海1,2,*, 史雪飞1,2, 宋英健1,2, 李文勃1,2, 孙乐民1,2
1 河南科技大学材料科学与工程学院,河南 洛阳 471023
2 高端轴承摩擦学技术与应用国家地方联合工程实验室,河南 洛阳 471023
Effect of Contact Area on the Properties of H62/T2 Elastic Contact Current-carrying Friction Pair
JIAO Jinlong1,2, YANG Zhenghai1,2,*, SHI Xuefei1,2, SONG Yingjian1,2, LI Wenbo1,2, SUN Lemin1,2
1 School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, Henan, China
2 National United Engineering Laboratory for Advanced Bearing Tribology, Luoyang 471023, Henan, China
下载:  全 文 ( PDF ) ( 12060KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对接触条件对电连接器热插拔条件下性能影响不明的问题,采用H62/T2弹性接触摩擦副,在微-滑动摩擦试验机上,对其进行往复滑动载流摩擦实验,研究了接触面积对H62/T2载流摩擦磨损性能的影响。结果表明:在给定电流为2 A、4 A、6 A条件下,随接触面积的增加,摩擦系数波动性降低,即摩擦过程的稳定性提高,平均摩擦系数和总磨损体积均呈现增大趋势;在电流为2 A条件下,当圆弧半径从1.5 mm增加至5.5 mm时,电流波动性减小,载流稳定性提高,载流效率η从98.26%提高至99.73%。摩擦副的摩擦磨损机制包括磨粒磨损、粘着磨损、电弧侵蚀且多机制耦合作用,随接触面积的增加,以熔融和喷溅为主的电弧侵蚀减少,以犁沟和粘着为主的机械磨损加剧。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
焦金隆
杨正海
史雪飞
宋英健
李文勃
孙乐民
关键词:  载流摩擦  接触面积  电连接  接触失效    
Abstract: Aiming at the problem that the influence of contact conditions on the performance of electrical connectors under the contact hot-swap plug condition was unclear, the H62 wire/T2 plate elastic contact friction pair was used to carry out reciprocating sliding current-carrying friction experiments on the micro-sliding friction testing machine, and the influence of contact area on the friction and wear performance of H62/T2 current-carr-ying was studied. The experimental results show that under the condition of a given current of 2 A, 4 A and 6 A, with the increase of contact area, the friction coefficient stability parameter ε decreases, that is, the stability of the friction process increases, and the average friction coefficient and wear volume show an increasing trend. Under the condition of current of 2 A, when the arc radius increases from 1.5 mm to 5.5 mm, the current fluctuation decrease, the current carrying stability increase, and the current carrying efficiency increases from 98.26% to 99.73%. The wear of the friction pair presents the form of abrasive wear, adhesive wear and arc erosion coexisting and coupling, with the increase of contact area, arc erosion decreases, and mechanical wear is intensified by furrow and adhesion.
Key words:  current-carrying friction    contact area    electrical connection    contact failure
出版日期:  2024-08-25      发布日期:  2024-09-10
ZTFLH:  TH117.1  
基金资助: 国家自然科学基金(U1804252;U1730130);河南省高等学校重点科研项目(22A430021)
通讯作者:  *杨正海,2015年7月毕业于机械科学研究总院,获得工学博士学位。现为河南科技大学副教授、硕士研究生导师。主要研究方向为材料摩擦学、塑性加工。发表论文30余篇,其中SCI、EI收录10余篇,参与编写专著、教材3部。近年来主持并参与了国家自然科学基金项目(U1730130)等省部级以上项目10余项。yym20090115@163.com   
作者简介:  焦金隆,2021 年 6 月毕业于中国石油大学胜利学院,获得工学学士学位。现为河南科技大学材料科学与工程学院硕士研究生,在杨正海副教授的指导下进行研究。目前主要研究领域为插拔件的载流摩擦磨损性能及机理。
引用本文:    
焦金隆, 杨正海, 史雪飞, 宋英健, 李文勃, 孙乐民. 接触面积对H62/T2弹性接触载流摩擦副性能的影响[J]. 材料导报, 2024, 38(16): 23030298-5.
JIAO Jinlong, YANG Zhenghai, SHI Xuefei, SONG Yingjian, LI Wenbo, SUN Lemin. Effect of Contact Area on the Properties of H62/T2 Elastic Contact Current-carrying Friction Pair. Materials Reports, 2024, 38(16): 23030298-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23030298  或          http://www.mater-rep.com/CN/Y2024/V38/I16/23030298
1 Ren W B, Du Y W, Cui L, et al. Wear, 2014, 321, 70.
2 Huang B, Li X B, Zeng Z, et al. Microelectronics Reliability, 2016, 66, 106.
3 Luo Y Y, Su J Y, Ren Y L. Electrical Measurement & Instrumentation, 2020, 57(17), 8 (in Chinese).
骆燕燕, 苏敬元, 任永隆. 电测与仪表, 2020, 57(17), 8.
4 Pan J, Zhang W, Zhang L B, et al. Journal of Mechanical Engineering, 2021, 57(10), 257 (in Chinese).
潘骏, 张雯, 张利彬, 等. 机械工程学报, 2021, 57(10), 257.
5 Xu L, Ling S, Lin Y, et al. Microelectronics Reliability, 2019, 100-101, 113348.
6 Sun G A, Yang Z H, Ni F, et al. Lubrication Engineering, 2021, 46(8), 49 (in Chinese).
孙高昂, 杨正海, 倪锋, 等. 润滑与密封, 2021, 46(8), 49.
7 Pompanon F, Laporte J, Fouvry S, et al. Wear, 2019, 426-427, 652.
8 Lv K H, Cheng X Z, Wu L X, et al. Failure Analysi and Prevention, 2023, 18(1), 37.
吕克洪, 程先哲, 吴林筱, 等. 失效分析与预防, 2023, 18(1), 37.
9 Yu X Y, Zhang L, Zhang X, et al. Materials Science and Engineering of Powder Metallurgy, 2022, 27(6), 648 (in Chinese).
于芯悦, 张雷, 张鑫, 等. 粉末冶金材料科学与工程, 2022, 27(6), 648.
10 Sun K, Diao D F. Carbon, 2020, 157, 113.
11 Xiao J K, Liu L M, Chao Z, et al. Wear, 2016, 368-369, 461.
12 Sung I H, Kim J W, Noh H J, et al. Tribology International, 2016, 95, 256.
13 Zhang Y Z, Yang Z H, Song K X, et al. Friction, 2013, 1(3), 259.
14 Zhao Y W, Sun L M. Materials Protection, 2021, 54(10), 97(in Chinese).
赵彦文, 孙乐民. 材料保护, 2021, 54(10), 97.
15 Guo F Y, Jiang G Q, Zhao R B, et al. Proceedings of the CSEE, 2009, 29(36), 113.
郭凤仪, 姜国强, 赵汝彬, 等. 中国电机工程学报, 2009, 29(36), 113.
16 Hui Y, Liu G M, Yan T, et al. Materials Protection, 2019, 52(8), 1 (in Chinese).
惠阳, 刘贵民, 闫涛, 等. 材料保护, 2019, 52(8), 1.
17 Guo F Y, Ma T L, Chen Z H, et al. Transactions of China Electrotechnical Society, 2009, 24(12), 18 (in Chinese).
郭凤仪, 马同立, 陈忠华, 等. 电工技术学报, 2009, 24(12), 18.
18 Ding T, Chen G X, Li Y M, et al. Tribology International, 2014, 79, 8.
19 Wang S B, Peng M J, Sun Y, et al. Materials Reports, 2020, 34(9), 117.
王塞北, 彭明军, 孙勇, 等. 材料导报, 2020, 34(9), 117.
20 Shi X F, Yang Z H, Zhang Y Z. Materials Reports, 2023, 37(5), 166(in Chinese).
史雪飞, 杨正海, 张永振. 材料导报, 2023, 37(5), 166.
[1] 史雪飞, 杨正海, 张永振. 系统弹性对载流摩擦副无电条件下摩擦磨损性能的影响[J]. 材料导报, 2023, 37(5): 21080045-5.
[2] 曾泽祥, 宋晨飞, 吴海红, 吕斌, 孙超, 逄显娟, 张永振. 滑滚比对Cu/Cu对滚配副载流摩擦性能的影响[J]. 材料导报, 2023, 37(21): 22040041-6.
[3] 惠阳, 刘贵民, 闫涛, 杜林飞, 周雳. 载流摩擦磨损研究现状及展望[J]. 材料导报, 2019, 33(13): 2272-2280.
[4] 席翔, 夏延秋, 李晓鹤, 冯欣. 颗粒填充型聚合物的导热性能与摩擦磨损性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 681-688.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed